KEVICC Key Stage 4 Curriculum Subject: Mathematics			
Spring Half-Term			
Term: Year 10 Spring Term - Block Three			Topic: Con
What is the essential knowledge from this unit? What do students need to remember and understand?			
	Specification content	Spec	ation notes
G5	Use the basic congruence criteria for triangles (SSS, SAS, ASA, RHS)		

Students should be able to:

- understand congruence
- identify shapes that are congruent
- understand and use conditions for congruent triangles: SSS, SAS, ASA and RHS
- recognise congruent shapes when rotated, reflected or in different orientations
- understand and use SSS, SAS, ASA and RHS conditions to prove the congruence of triangles using formal arguments, and to verify standard ruler and compass constructions.

G6 Apply angle facts, triangle congruence, similarity and properties of quadrilaterals to conjecture and derive results about angles and sides including the base angles of an isosceles triangle are equal, and use known results to obtain simple proofs

Students should be able to:

- understand similarity
- understand similarity of triangles and of other plane figures, and use this to make geometric inferences
- identify shapes that are similar, including all squares, all circles, or all regular polygons with equal number of sides
- recognise similar shapes when rotated, reflected or in different orientations
- apply mathematical reasoning, explaining, and justifying inferences and deductions
- show step-by-step deduction in solving a geometrical problem
- state constraints and give starting points when making deductions.

G19
Apply and use the concepts of congruence and similarity, including the relationships between lengths, areas, and volumes in similar figures

Students should be able to:

- understand the effect of enlargement on perimeter
- work out the side of one shape that is similar to another shape given the ratio or st factor of lengths.

G19h Apply and use the concepts of congruence and similarity, including the relationships between lengths, areas and volumes in similar figures

Students should be able to:

- understand the effect of enlargement on areas of shapes
- understand the effect of enlargement on volumes of solids
- compare the areas or volumes of similar shapes or solids, knowing that if a : b is the ratio of lengths, then $a^{2}: b^{2}$ is the ratio of areas and $a^{3}: b^{3}$ is the ratio of volumes
- work out the area or volume of one shape/solid given the area or volume of a similar shape/solid and the ratio or scale factor of lengths of the shape/solid.

R12 Compare lengths using ratio notation; Make links to trigonometric ratios
Students should be able to:

- understand the effect of enlargement on perimeter
- understand the effect of enlargement on areas of shapes
- understand the effect of enlargement on volumes of shapes and solids
- compare the areas or volumes of similar shapes
- understand, recall, and use trigonometry ratios in right-angled triangles.

Key Vocabulary and notation.

SSS	Congruent
Side-side	Similar
side	Scale factor
ASA	In proportion
Angle-side-	Ratio
angle	Corresponding
SAS	Length scale
Side-Angle-	factor
Side	Parallel
RHS	Alternate
Right angle-	angles
hypotenuse-	Corresponding
side	angles
Conditions	Enlarge
of	Length scale
congruence	factor
Object	Area scale
Image	factor
Proportion	Volume scale
Enlarge	factor

Mathematical questioning should be designed to unpick the structure of the maths and deepen the student's understanding. When students talk about mathematical concepts, they should develop the vital mathematical language that helps them explain their ideas fully.

Students are expected and encouraged to use terminology during all discussions, verbal feedback and in written content.

What prior learning supports understanding of this content?

- Understand ratio and its link to multiplication.
- Use ratio notation.
- Reduce ratios to simplest form.
- Solve ratio problems
- Recap understanding of congruency
- Review area and volume of shapes covered in key stage 3.
- Use of significant figures

How does this content link to future learning?

- Know the formulae for: Pythagoras' theorem, $a^{2}+b^{2}=c^{2}$, and the trigonometric ratios,

$$
\sin \theta=\frac{\text { opposite }}{\text { hypotenuse }} \cos \theta=\frac{\text { adjacent }}{\text { hypotenuse }} \quad \tan \theta=\frac{\text { opposite }}{\text { adjacent }}
$$

Apply them to find angles and lengths in right-angled triangles in two- and three-dimensional figure.

- Apply angle facts, triangle congruence, similarity and properties of quadrilaterals to conjecture and derive results about angles and sides including Pythagoras' Theorem and use known results to obtain simple proofs.
- Compare lengths using ratio notation; Make links to trigonometric ratios
Writing: Independent writing tasks and how they are structured
- Using the correct subject specific terminology for numbers and symbols - examination papers, class books.
- Responding to questions that ask for an explanation or a reason - examination papers, class books.
- Self-evaluation, reviewing, reflecting and analysis of own work class books, personalised learning checklists and analysis.
- Creating notes that can be used later for revision purposes class books, revision cards, mind maps etc.
- Recognising terminology, numbers, and symbols.

Key assessments:

How will do students review the information learned?
End of block assessments
AQA end of block assessments provide a quick progress check at the end of each block of learning to make sure students have
understood the content being covered. These are available for both foundation and higher tiers
End of term/year assessments and mock examinations.
End of term assessments assessing the students' progress towards targets and provide diagnostic information to modify future teaching. End of year 9 and 10 examinations assessing the students' progress towards targets and provide diagnostic information to modify future teaching.
Two mock examinations seasons take place during year 11 using previous years AQA 8300 examination papers. Students to experience the full suite of papers at both Foundation and higher tiers using Non-calculator and Calculator requirements.
All examinations will explore the three examination papers at both foundation and higher tiers using non-calculator and calculator requirements.
How will feedback be seen?
Marked end of block, term assessments and mock examinations.
Personalised learning checklists for all assessments identifying strengths and areas of development.
Written teacher feedback and marking in compliance with faculty and College Marking Policies. Student responses to marking. Students self-mark using purple pen. Verbal feedback given every lesson from teacher and peers as appropriate. Teacher and student selfassessment of presentation of class books will be completed to ensure written work is of high standard and students are achieving their potential.

