

Students should be able to:

- understand, recall, and use Pythagoras' theorem in 2D problems
- understand, recall, and use trigonometric relationships in right-angled triangles
- use the trigonometric relationships in right-angled triangles to solve problems, including those involving bearings.

G20h

Know the formulae for: Pythagoras' theorem, $a^{2}+b^{2}=c^{2}$, and the trigonometric ratios, $\sin \theta=\frac{\text { opposite }}{\text { hypotenuse }} \quad \cos \theta=\frac{\text { adjacent }}{\text { hypotenuse }} \quad \tan \theta=\frac{\text { opposite }}{\text { adjacent }}$
apply them to find angles and lengths in right-angled triangles in two- and threedimensional figures

Students should be able to:

- understand, recall, and use Pythagoras' theorem in 3D problems
- understand, recall, and use trigonometry relationships in 3D problems
- use these relationships in 3D contexts, including finding the angles between a line and a plane.

G21 Know the exact values of $\sin \theta$ and $\cos \theta$ for $\theta=\underline{0^{\circ}, 30^{\circ} 45^{\circ}, 60^{\circ} \text { and } 90^{\circ}}$ Know the exact value of $\tan \theta$ for $\theta=\underline{0^{\circ}}, 30^{\circ}, 45^{\circ}$ and 60°

Students should be able to:

- recall exact values of sine, cosine and tangent for $0^{\circ}, 30^{\circ}, 45^{\circ}$ and 60°
- recall that $\sin 90^{\circ}=1$ and $\cos 90^{\circ}=0$
- solve right-angled triangles with angles of $30^{\circ}, 45^{\circ}$ or 60° without using a calculator.

G6
Apply angle facts, triangle congruence, similarity and properties of quadrilaterals to conjecture and derive results about angles and sides including Pythagoras' Theorem and use known results to obtain simple proofs

Students should be able to:

- understand similarity
- understand similarity of triangles and of other plane figures, and use this to make geometric inferences
- identify shapes that are similar, including all squares, all circles, or all regular polygons with equal number of sides
- recognise similar shapes when rotated, reflected or in different orientations
- apply mathematical reasoning, explaining, and justifying inferences and deductions
- show step-by-step deduction in solving a geometrical problem
- state constraints and give starting points when making deductions.

R12 Compare lengths using ratio notation; Make links to trigonometric ratios

Students should be able to:

- understand the effect of enlargement on perimeter
- understand the effect of enlargement on areas of shapes
- understand the effect of enlargement on volumes of shapes and solids
- compare the areas or volumes of similar shapes
- understand, recall, and use trigonometry ratios in right-angled triangles.

Key Vocabulary and notation.

Pythagoras'	Trigonometry
Theorem	Angle
Formula	Lengths
Right Angle	Relationship
Adjacent	Trigonometric
Opposite	ratio
Hypotenuse	Square
Right Angle	Square root
Triangle	Sum
Non right-	Total
angle triangle	Substitute
3 dimensional	Expression
Formula	Calculate
Rearrange	Proof
Subject	Prove
Subject of	Surds
formula	Exact value
Sine	Simplifying
Cosine	$\sin \theta \quad \sin ^{-1} x$
Inverse	$\cos \theta \quad \cos ^{-1} x$
Plane	$\tan \theta \quad \tan ^{-1} x$
Midpoint	Slope
Perpendicular	Diagonal

Mathematical questioning should be designed to unpick the structure of the maths and deepen the student's understanding. When students talk about mathematical concepts, they should develop the vital mathematical language that helps them explain their ideas fully.

Students are expected and encouraged to use terminology during all discussions, verbal feedback and in written content.

What prior learning supports understanding of this content?

- Identify 2-D shapes with 3-D shapes.
- Understand the language of faces, edges, and vertices.
- Calculate squares and square roots.
- Substitute numerical values into formulae and expressions.
- Identify the hypotenuse of a right-angled triangle.
- Determine whether a triangle is right-angled.
- Calculate missing sides in right-angled triangles.

Reading: Where in the unit are students supported to read

 complex academic text?- Reading and understanding mathematical questions and problems' - teacher input.
- Decoding complex examination questions - explain what they are asking the student to do' - teacher input.
- Following instructions to solve problems - break down the tasks - teacher input.
- Recognising terminology, numbers, and symbols.

How does this content link to future learning?

- Compare lengths, areas and volumes using ratio notation, making links to similarity and scale factors.
- Know and apply the formulae to calculate the volume of cuboids and other right prisms (including cylinders).
- Calculate the volume of spheres, pyramids, cones and composite solids, including frustums.
- Calculate exactly with fractions, surds, and multiples of π; simplify surd expressions involving squares (e.g. $\sqrt{12}=\sqrt{4 \times 3}=\sqrt{4} \times \sqrt{3}=\sqrt[2]{3}$) and rationalise denominators.

Writing: Independent writing tasks and how they are structured

- Using the correct subject specific terminology for numbers and symbols - examination papers, class books.
- Responding to questions that ask for an explanation or a reason - examination papers, class books.
- Self-evaluation, reviewing, reflecting and analysis of own work class books, personalised learning checklists and analysis.
- Creating notes that can be used later for revision purposes class books, revision cards, mind maps etc.

Key assessments:

How will do students review the information learned?
End of block assessments.
AQA end of block assessments provide a quick progress check at the end of each block of learning to make sure students have understood the content being covered. These are available for both foundation and higher tiers.
End of term/year assessments and mock examinations.
End of term assessments assessing the students' progress towards targets and provide diagnostic information to modify future teaching.
End of year 9 and 10 examinations assessing the students' progress towards targets and provide diagnostic information to modify future teaching.
Two mock examinations seasons take place during year 11 using previous years AQA 8300 examination papers. Students to experience the full suite of papers at both Foundation and higher tiers using Non-calculator and Calculator requirements.
All examinations will explore the three examination papers at both foundation and higher tiers using non-calculator and calculator
requirements.
How will feedback be seen?
Marked end of block, term assessments and mock examinations.
Personalised learning checklists for all assessments identifying strengths and areas of development.
Written teacher feedback and marking in compliance with faculty and College Marking Policies. Student responses to marking. Students self-mark using purple pen. Verbal feedback given every lesson from teacher and peers as appropriate. Teacher and student selfassessment of presentation of class books will be completed to ensure written work is of high standard and students are achieving their potential.

