KEVICC Key Stage 4 Curriculum Subject: Mathematics

Spring Half-Term	
Term: Year 11 Spring Term - Block Seven	Topic: Gradient and Rate of Change
What is the essential knowledge from this unit?	

What is the essential knowledge from this unit?
What do students need to remember and understand?

Specification content

Specification notes

R15h
Interpret the gradient at a point on a curve as the instantaneous rate of change.
Apply the concepts of average and instantaneous rates of change (gradients of chords and tangents) in numerical, algebraic, and graphical contexts

Students should be able to:

- draw a tangent at a point on a curve and measure the gradient
- interpret the meaning of the gradient as the rate of change of the variable on the vertical axis compared to the horizontal axis
- understand that if the vertical axis represents speed/velocity and the horizontal axis represents time then the gradient will represent acceleration
- understand that if the vertical axis represents distance and the horizontal axis represents time then the gradient will represent speed/velocity
- understand the difference between positive and negative gradients as rates of change
- understand that the rate of change at a particular instant in time is represented by the gradient of the tangent to the curve at that point.

R14
 Interpret the gradient of a straight line as a rate of change

Students should be able to:

- interpret the meaning of the gradient as the rate of change of the variable on the vertical axis compared to the horizontal axis.

Key Vocabulary and notation.

Direct	Decrease
proportion	Same
Inverse	Reciprocal
proportion	Curve
Rate of	Axis
change	x-axis
Conversion	y-axis
Ratio	Table of
Variables	values
Compared	Smooth curve
Dividing	Plot
Straight line	Product
Vertical	Vice-versa
Horizontal	Constant
Gradient	$y=k x$
Proportional	$y=\frac{k}{x}$
Increase	

Mathematical questioning should be designed to unpick the structure of the maths and deepen the student's understanding. When students talk about mathematical concepts, they should develop the vital mathematical language that helps them explain their ideas fully.

Students are expected and encouraged to use terminology during all discussions, verbal feedback and in written content.

What prior learning supports understanding of this content?

- Recognise that equations of the form $y=m x+c$ correspond to straight-line graphs in the coordinate plane
- Draw graphs of functions in which y is given explicitly or implicitly in terms of x
- Complete tables of values for straight-line graphs
- Calculate the gradient of a given straight-line given two points or from an equation.
- Use the fact that the angle between the tangent and radius is 90° to work out the gradient of a tangent and hence the equation of a tangent at a given point
- Substitute numerical values into formulae and expressions.

Reading: Where in the unit are students supported to read complex academic text?

- Reading and understanding mathematical questions and problems' - teacher input.
- Decoding complex examination questions - explain what they are asking the student to do' - teacher input.
- Following instructions to solve problems - break down the tasks - teacher input.
- Recognising terminology, numbers, and symbols.

How does this content link to future learning?

- Consolidate all aspects of Ratio and Proportion from key stage 3 and 4.
- Revise and explore subject content through examination questions and in context.

Writing: Independent writing tasks and how they are structured

- Using the correct subject specific terminology for numbers and symbols - examination papers, class books.
- Responding to questions that ask for an explanation or a reason - examination papers, class books.
- Self-evaluation, reviewing, reflecting and analysis of own work - class books, personalised learning checklists and analysis.
- Creating notes that can be used later for revision purposes class books, revision cards, mind maps etc.

Key assessments:

How will do students review the information learned?
End of block assessments.
AQA end of block assessments provide a quick progress check at the end of each block of learning to make sure students have
understood the content being covered. These are available for both foundation and higher tiers.
End of term/year assessments and mock examinations.
End of term assessments assessing the students' progress towards targets and provide diagnostic information to modify future teaching. End of year 9 and 10 examinations assessing the students' progress towards targets and provide diagnostic information to modify future teaching.
Two mock examinations seasons take place during year 11 using previous years AQA 8300 examination papers. Students to experience
the full suite of papers at both Foundation and higher tiers using Non-calculator and Calculator requirements.
All examinations will explore the three examination papers at both foundation and higher tiers using non-calculator and calculator
requirements.

How will feedback be seen?

Marked end of block, term assessments and mock examinations.
Personalised learning checklists for all assessments identifying strengths and areas of development.
Written teacher feedback and marking in compliance with faculty and College Marking Policies. Student responses to marking. Students self-mark using purple pen. Verbal feedback given every lesson from teacher and peers as appropriate. Teacher and student selfassessment of presentation of class books will be completed to ensure written work is of high standard and students are achieving their potential.

