Name: Sowtion S

GCSE 9-1

Practice Paper
Set A
Paper 1 - Non Calculator

0
 Corbettmoths

Equipment

1. A black ink ball-point pen.
2. A pencil.
3. An eraser.
4. A ruler.
5. A pair of compasses.
6. A protractor.

Guidance

1. Read each question carefully.
2. Don't spend too long on one question.
3. Attempt every question.
4. Check your answers seem right.
5. Always show your workings

Information

1. Time: 1 hour 30 minutes

Question	Mark	Available
1		5
2		2
3		3
4		3
5		4
6		2
7		3
8		3
9		4
10		3
11		5
12		2
13		4
14		4
15		4
16		4
17		4
18		3
19		4
20		5
21		4
22		5
Total		80

2. The maximum mark for this paper is 80 .
3. The marks for questions are shown in brackets
4. You may use tracing paper.
5. A shop sells umbrellas.

The scatter graph shows information about the number of umbrellas sold each week and the rainfall that week, in millimetres.

(a) Describe the relationship between the rainfall and umbrellas sold.
........positive correlation
As the rainfall increases, the number of umbrellas sold increases
(b) What is the most number of umbrellas sold in one week?
(c) In how many weeks did the shop sell over 105 umbrellas?
\qquad

In another week, there was 6 mm of rain.
(d) Estimate the number of umbrellas sold.
\qquad
(e) Explain why it may not be appropriate to use your line of best fit to estimate the number of umbrellas sold in a week with 25 mm of rainfall.

The graph does it blow any data for more
\qquad
2. Write 60 as a product of its prime factors.

$2 \times 2 \times 3 \times 5$

$$
=2^{2} \times 3 \times 5
$$

3. Work out $412.8 \div 2.4=4128^{\circ} \div 24$

$$
\frac{172}{2 4 \longdiv { 4 1 ^ { 1 7 } 2 ^ { 4 } 8 }}
$$

4. A rectangle is shown below.

The length of the rectangle is $x+9 \mathrm{~cm}$.
The width of the rectangle is $x-1 \mathrm{~cm}$.
Form an expression for the area of the rectangle.

$$
\text { area }=(x+9)(x-1)=x^{2}-x+9 x-9
$$

$$
=x^{2}+8 x-9
$$

5.

Shown is a right-angled triangle.
Work out the area of the triangle

$$
\begin{aligned}
h^{2}=15^{2}-12^{2}= & 225-144=81 \\
h=\sqrt{81}= & 9 \mathrm{~cm} \\
& \text { area }=1 / 2(9 \times 12)=54 \mathrm{~cm}^{2}
\end{aligned}
$$

6.

The lines A and B are parallel.
The line A passes through the point $(0,8)$
The line B has equation $y=3 x+1$
Write down the equation of line A

$$
\begin{array}{r}
\text { gradient }=3 \\
y-\text { intercept }=8
\end{array}
$$

$$
y=3 x+8
$$

7. 10 girls and 15 boys sit a test.

The mean mark for the boys is 70 .
The mean mark for the girls is 82 .
Work out the mean mark for the whole class.

$$
\begin{aligned}
& \begin{aligned}
& \text { boys' total }=70 \times 15=1050 \\
& \text { girls' total }=82 \times 10=820 \\
& \text { total }=1870 \\
& \text { mean }=\frac{1870}{25}=
\end{aligned}
\end{aligned}
$$

$2 5 \longdiv { 7 4 . 8 }$
74.8
8. Jacob buys a watch costing $£ 84$

This cost includes VAT at a rate of 20%.
How much is the watch without VAT?
ongunal $\frac{\times 1.2}{7}=84$
\therefore original price $=84 \div 1.2=70$
£
9. (a) Express $\sqrt{75}$ in its simplest form

$$
\sqrt{25} \times \sqrt{3} \quad 5 \sqrt{3}
$$

(b) Arrange the following numbers in order, smallest to largest
$5 \sqrt{3}$
$2 \sqrt{22}$
$4 \sqrt{5}$
$\sqrt{75}$
$\sqrt{90}$
$\sqrt{88}$
$\sqrt{80}$
$5 \sqrt{3}, 4 \sqrt{5}$
$2 \sqrt{22}$
$3 \sqrt{10}$
10. Expand and simplify $(1-2 x)(x+3)(x-1)$

$$
\begin{aligned}
(1-2 x)(x+3) & =x+3-2 x^{2}-6 x \\
& =3-2 x^{2}-5 x \\
\left(3-2 x^{2}-5 x\right)(x-1) & =3 x-3-2 x^{3}+2 x^{2}-5 x^{2}+5 x \\
& =8 x-3 x^{2}-2 x^{3}-3
\end{aligned}
$$

or

$$
-2 x^{2}-3 x^{2}+8 x-3
$$

11.

(a) Find the value of $100^{\frac{1}{2}}$

$$
\sqrt{100}
$$

(b) Find the value of $4^{-\frac{5}{2}}$

$$
\frac{1}{\sqrt{4}} 5=\frac{1}{2^{5}}
$$

12. The graph of $y=f(x)$ is shown on the grid

(a) Write down an estimate for the coordinates of the turning point of the graph

$$
\begin{equation*}
(-1.5,-4.2 \tag{1}
\end{equation*}
$$

(b) Use your graph to find the value of $f(1.2)$

3
13. The force, F newtons, exerted by a magnet on a metal object is inversely proportional to the square of the distance d cm .

When $d=2 \mathrm{~cm}, F=50 \mathrm{~N}$.
(a) Express F in terms of d .

$$
\begin{array}{r}
F \alpha \frac{d^{2}}{d^{2}} \Rightarrow F=\frac{k}{d^{2}} \quad 50=\frac{k}{2^{2}} \Rightarrow k=200 \\
\\
F=\frac{200}{d^{2}}
\end{array}
$$

(b) Find the force when the distance between the magnet and metal object is 10 cm

$$
F=\frac{200}{10^{2}}=2
$$

$$
F=\ldots \ldots . .
$$

14. The cost of a mobile phone is x pounds

The cost of a television is y pounds
When both prices are increased by $£ 40$, the ratio for the cost of the mobile phone to the cost of the television is 15:22

When both prices are decreased by $£ 100$, the ratio for the cost of the mobile phone to the cost of the television is $8: 15$

Find the values of x and y

$$
\begin{array}{cc}
\frac{x+40}{y+40}=\frac{15}{22} & \frac{x-100}{y-100}=\frac{8}{15} \\
22 x+880=15 y+600 & 15 x-1500=8 y-800 \\
22 x-15 y=-280 & 15 x-8 y=700 \\
\times 8 & \times 15 \\
176 x-120 y=-2240 & 225 x-120 y=10500 \tag{2}
\end{array}
$$

(2) -(1) gives

$$
\begin{aligned}
49 x & =12740 \\
x & =260
\end{aligned}
$$

hence

$$
\begin{gathered}
15 \times 260-8 y=700 \\
8 y=3900-700 \\
y=400
\end{gathered}
$$

$$
x=\varepsilon 260
$$

$$
y=\varepsilon .400
$$

(4)
15. A solid wooden sphere has radius of 5.97 cm
(a) Work out an estimate for the volume of the sphere Give your answer in terms of π
$r \simeq 6 \mathrm{~cm}$

$$
V=\frac{4}{3} \pi \times 6^{3}=\frac{4 \times 216}{3} \pi
$$

Volume of a sphere $=\frac{4}{3} \pi r^{3}$

The sphere has a mass of 1002 g
Richard wants to work out the density of the wood.
In his calculations, he uses a radius of 6 cm and a mass of 1000 g
(b) Is his answer an over-estimate or an under-estimate of the actual density? Explain why

$$
\text { density }=\frac{\text { Mass }}{\text { Volume }}
$$

his approxvicidion for mass is an underestimate his approxnatu for volume is an overestimate $\frac{\text { underestimate }}{\text { overestimate }}=$ underestimate
16. Prove algebraically that
$(4 n+1)^{2}-(2 n-1)$ is an even number
for all positive integer values of n.

$$
\begin{aligned}
& (4 n+1)^{2}-(2 n-1) \\
= & 16 n^{2}+8 n+1-2 n+1 \\
= & 16 n^{2}+6 n+2 \\
= & 2\left(8 n^{2}+3 n+1\right) \text { which is a multipleof } 2 \\
& \text { so clary even }
\end{aligned}
$$

17. Samantha has 10 black socks, 8 white socks and 2 blue socks.

She picks two socks at random, without replacement.
Calculate the probability she chooses two socks of the same colour.

$$
\left.\begin{array}{l}
P(\text { black, black })=\frac{10}{20} \times \frac{9}{19}=\frac{90}{380} \\
P(\text { white, white })=\frac{8}{20} \times \frac{7}{19}=\frac{56}{380} \\
P(\text { blue, blue })=\frac{2}{20} \times \frac{1}{19}=\frac{2}{380}
\end{array}\right\}+
$$

18. A straight line passes through the points $A(1,4)$ and $B(5,16)$.

Find the equation of the line perpendicular to $A B$ that passes through the midpoint of $A B$.

$$
\begin{aligned}
& \text { graders } A B=\frac{16-4}{5-1}=\frac{12}{4}=3 \\
& \therefore \text { perpendicular greene }=\frac{1}{3} \\
& \text { midpouty } A B=\left(\frac{5+1}{2}, \frac{16+4}{2}\right)=(3,10) \\
& y=-\frac{1}{3} x+c \\
& 10=-\frac{1}{3} x^{3}+c \\
& c=11
\end{aligned} \quad y=-\frac{1}{3} x+11 .
$$

19. BCEF is a parallelogram.

The point C is a point on the line $B C D$ such that $B C: C D=4: 7$ FD and CE meet at the point G.

$$
\overrightarrow{B C}=\mathbf{a} \quad \overrightarrow{B F}=\mathbf{b}
$$

Work out $\overrightarrow{G D}$ in terms of \mathbf{a} and \mathbf{b} Give your answer in its simplest form.

$$
\left.\begin{array}{l}
\overrightarrow{C D}=7 / 4 a \quad \therefore \overrightarrow{B D}=11 / 4 \stackrel{a}{\sim} \\
\begin{array}{rl}
\therefore \overrightarrow{F D} & =\overrightarrow{F B}+\overrightarrow{B D}
\end{array}=11 / 4 a-b \\
\overrightarrow{G D}=7 / 11 \\
\overrightarrow{F D}
\end{array}=\frac{7 / 11}{11} \frac{a}{4}-b\right) .
$$

20. Solve the simultaneous equations

$$
\begin{array}{r}
x^{2}+y^{2}=1 \\
x+2 y=1 \\
x=1-2 y
\end{array}
$$

substituting gives

$$
\begin{aligned}
& (1-2 y)^{2}+y^{2}=1 \\
& 1-4 y+4 y^{2}+y^{2}=1 \\
& 5 y^{2}-4 y=0 \\
& y(5 y-4)=0 \\
& y=0 \text { or } y=\frac{4}{5} \\
& \text { if } y=0 \quad x=1 \\
& \text { it } y=\frac{4}{5} \quad x=1-2 \times \frac{4}{5}=\frac{-3}{5} \\
& x=1 \quad y=0 \\
& x=-\frac{3}{5} \quad y=\frac{4}{5}
\end{aligned}
$$

21. ABCD and LMNO are squares.

Angle CBL $=x$

Prove that triangles ABO and CBL are congruent.
angle $B C L=90-x$ (since $B C D$ is a right aye) also
angle $A B O=90^{-x}$ (since $A B C$ is a right angle)
So $B \hat{C} L=A \hat{B} O$
Also $\hat{B A O}=180-90-(90-x)=x$
So $\hat{C B L}=\hat{B A O}(=x) *$
$B C=A B$ (since $A B C D$ is a square)
\therefore triangles $A B O$ \& $C B L$ are congment $A S A$.
22. The diagram shows a kite $A B C D$.

Given that $B C=C D=x \mathrm{~cm}$

$$
A B=A D=5 \mathrm{~cm}
$$

angle $B C D=60^{\circ}$
Prove $\operatorname{Cos} B A D=1-\frac{x^{2}}{50}$
$\triangle B C D$ is equilateral, so $B D=x$
Using the corine rule in triangle $A B D$:

$$
\begin{aligned}
\cos B A Q=\frac{5^{2}+5^{2}-x^{2}}{2 \times 5 \times 5} & =\frac{50-x^{2}}{50} \\
& =1-\frac{x^{2}}{50}
\end{aligned}
$$

