Name: SoluTI OUS

GCSE 9-1 Higher
 Practice Paper
 Set C
 Paper 3 - Calculator

正 Corbettmoths

Equipment

1. A black ink ball-point pen.
2. A pencil.
3. An eraser.
4. A ruler.
5. A pair of compasses.
6. A protractor.
7. A calculator

Guidance

1. Read each question carefully.
2. Don't spend too long on one question.
3. Attempt every question.
4. Check your answers seem right.
5. Always show your workings

Information

1. Time: 1 hour 30 minutes

Question	Mark	Available
1		3
2		3
3		3
4		3
5		3
6		6
7		3
8		4
9		4
10		3
11		3
12		5
13		3
14		3
15		7
16		3
17		5
18		4
19		5
20		3
21		4
Total		80

2. The maximum mark for this paper is 80 .
3. The marks for questions are shown in brackets
4. You may use tracing paper.
5. The table shows the distance travelled to school by 50 students.

Distance (miles)	Frequency
$0<d \leq 2$	22
$2<d \leq 4$	10
$4<d \leq 6$	11
$6<d \leq 8$	4
$8<d \leq 10$	3

(a) Draw a frequency polygon to represent this data.

One student is chosen at random.
(b) Work out the probability that this student travels more than 6 miles to school.
2. James has received two job offers.

A job in Milan which pays $€ 55,000$ a year.
A job in Boston which pays $\$ 64,000$ a year.
The exchange rates were $£ 1=\$ 1.42$ and $£ 1=€ 1.25$.
Which job offer has the highest salary?
Show working to explain your answer.
milan $655,000 \div 1.25=\mathcal{F}^{24,000}$
Bosten $\$ 64,000 \div 1.42=\$ 45070 \cdot 42 \cdots$
Bostion pays ($\mathbf{(1 0 7 0 . 4 2 \text {) More }}$
3. A liquid has mass of 10 kg and a density of $1.18 \mathrm{~g} / \mathrm{cm}^{3}$. Calculate the volume of the liquid. Include suitable units.
$D^{M} V \quad V=\frac{\text { mass }}{\text { density }}=\frac{10,000}{1.18}=8474.576$ $8474.6 \mathrm{~cm}^{3}$
4. At a football match, the ratio of women to men is 2:3.

The ratio of women to children is 7:6.

What percentage of the people at the rugby match are children?

(3)
5. (a) Which number does not have a reciprocal?

Olivia truncates a number, y, to one decimal place.
The result is 3.8
(b) Write down the error interval for y.

$$
3.8 \leqslant y<3.9
$$

6. Here is a rectangle and a regular octagon.

The length of the rectangle is 12 cm longer than the width of the rectangle. The perimeter of the rectangle is equal to the perimeter of the octagon.

5 of the regular octagons are used to make a shape.

The perimeter of this shape is 132 cm
Work out the area of the rectangle $x=132 \div 32=4.125 \mathrm{~cm}$
\therefore width $=2.25$ length $=14.25 \quad$ crea $=2.25 \times 14.25$
7. The distance of the moon to the Earth is $384,400 \mathrm{~km}$. The speed of light is $2.998 \times 10^{8} \mathrm{~m} / \mathrm{s}$.

Work out how long it will take light to travel from the moon to the Earth. Include suitable units.

$$
\begin{aligned}
& =\frac{384,400,000}{2.998 \times 10^{8}} \\
& =1.28218 \ldots
\end{aligned}
$$

8. A spinner has four sections, each labelled A, B, C and D. Susan and Helen spins the spinner a number of times.

The table shows some information.

	Number of spins	Number of $B ' s$	Relative frequency of spinning $a B$	
Susan	20	8	0.4	$8 \div 20=0.4$
Helen	120	42	0.35	$120 \times 0.35=42$

(a) Complete the table.

Michael is going to spin the spinner twice.
(b) Use Helen's results to work out an estimate for the probability that spinner will not land on a B on either spin.

Helen: not $B=0.65$
9. Harry invests $£ 4000$ in a savings account for 2 years at a rate of $X \%$ interest per annum.

At the end of the 2 years, Harry pays tax on the interest at a rate of 25%. After paying tax he gets $£ 121.20$

Work out the value of X
$\delta=121.20$ is 75% of the interest
$121.20 \div 75 \times 100=\$ 161.60$ (total interest)
Aptar 2 yeas he has $\$ 4161.60$
$4000 \times x^{2}=4161.60$
$\begin{aligned} \therefore x^{2}=\frac{4101.60}{4000} & =1.0404 \\ \therefore x & =1.02\end{aligned}$
Interest rate $=2 \%$
10. There are white chocolate, milk chocolate and dark chocolate sweets in a bag. A sweet is taken at random from the bag.

The table shows the probability of getting each type of chocolate

Chocolate	dark	milk	white
Probability	$\frac{3}{20}$		$\frac{1}{3}$

(a) Work out the probability of getting a milk chocolate

$$
\frac{3}{20}+\frac{1}{3}=\frac{29}{60}
$$

There are less than 500 chocolates in the bag.
(b) What is the greatest possible number of chocolates in the bag?
must be a multiplecq 60 (from part (a))
11. The graph shows information about the time taken by 40 children to solve a puzzle.

(a) Use the graph to find an estimate for the median time taken.

18
(b) Show that less than 20% of the students took longer than 30 seconds.
from the graph 34 took less than 30 , so 6 took more 20% of $40=8 \quad 6<8$
12. In a small village, one bus arrives a day.

The probability of rain in the village is 0.3 .
If it rains, the probability of a bus being late is 0.4 .
If it does not rain, the probability of a bus being late is 0.15 .
(a) Complete the tree diagram

Over x consecutive days, the bus is late 27 times.
(b) Work out an estimate for x
$P($ late $)=0.3 \times 0.4+0.7 \times 0.15=\frac{9}{40}$
so the bus is late 9 out on every 40 days so 27 out of every 120
$x \geq 120$
13. Solve the equation $2 x^{2}+6 x+1=0$

Give your answers to two decimal places.

$$
\begin{align*}
x & =\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}=\frac{-6 \pm \sqrt{6^{2}-4 \times 2 \times 1}}{2 x^{2}} \\
& =\frac{-6 \pm \sqrt{28}}{4} \\
& x=-0.18 \tag{3}
\end{align*}
$$

14. The surface areas of two mathematically similar shapes are in the ratio $9: 25$

The volume of the smaller solid is $229.5 \mathrm{~cm}^{3}$
Work out the volume of the larger solid
Area scale factor $9: 25$ length scale factor $3: 5$ (square root) volume sale factor $3^{3}: 5^{3}$ $=27: 125$
\therefore Vol of lager solid $=\frac{229.5}{27} \times 125=$
15. (a) Show that the equation $3 x-x^{3}=-11$ has a solution between $x=2$ and $x=3$

$$
\begin{aligned}
& \text { re-arranging } 3 x-x^{3}+11=0 \\
& x=2 \quad \text { CHS }=3 \times 2-2^{3}+11=9 \\
& x=3 \quad \text { CHS: } 3 \times 3-3^{3}+11=-7
\end{aligned}
$$

\therefore must be a solution between $2 \& 3$
(b) Show that the equation $3 x-x^{3}=-11$ can be rearranged to give

$$
\begin{aligned}
x & =\sqrt[3]{3 x+11} \\
3 x-x^{3} & =-11 \\
\Rightarrow 3 x+11 & =x^{3} \\
\Rightarrow x^{3} & =3 x+11 \quad \text { so } x=\sqrt[3]{3 x+11}
\end{aligned}
$$

(c) Starting with $x_{0}=3$, use the iteration formula $x_{n+1}=\sqrt[3]{3 x_{n}+11}$ three times to find an estimate for the solution of $3 x-x^{3}=-11$

$$
\begin{aligned}
& x_{0}=3 \\
& x_{1}=\sqrt[3]{3 \times x_{0}+11}=2.7144 \ldots \\
& x_{2}=\sqrt[3]{3 \times x_{1}+11} \cdot 2.675 \ldots \\
& x_{3}=\sqrt[3]{3 \times x_{2}+11}=2.6695 \ldots \\
& x=2.67
\end{aligned}
$$

16. Shown below is triangle RST.

Angle SRT is 53°, to the nearest degree. ST is 17 cm to the nearest centimetre.

Work out the upper bound for the length of RS. $S=\frac{S T}{\sin 53}$ ST : uppor bound: 17.5 $\sin 53$: lower bound $=\sin 52.5$
$\therefore R S_{\text {upper }}=\frac{17.5}{\sin 52.5}=$
17.

Find the area of the triangle.

$$
\cos A=\frac{10^{2}+9^{2}-8^{2}}{2 \times 9 \times 10}=\frac{13}{20} \quad \therefore A=49.458 \ldots
$$

$$
\text { area }=\frac{1}{2} \times 10 \times 9 \times \sin (49.458 . .)=
$$

$$
\begin{equation*}
34.197 \tag{cm²}
\end{equation*}
$$

(5)
18. Here is a speed-time graph for bicycle.

(a) Work out an estimate for the distance the bicycle travelled in the first 8 seconds.
Use 4 strips of equal width
aren $A: \frac{4 \times 9.6}{2}=19.2=0$
B: $\frac{9.6+13.2}{2} \times 4=45.6=\mathrm{C}$

$$
\begin{equation*}
\text { tolul }=19.2 \times 2+45.6 \times 2=129.6 \mathrm{~m} \tag{3}
\end{equation*}
$$

(b) Is your answer to (a) an underestimate or an overestimate of the actual distance the bicycle travelled?
Give a reason for your answer.
underestinate since the hies are
all clearly below the curve
19. The circle $x^{2}+y^{2}=25$ has tangents at the points A and B. The point A has coordinates $(0,5)$ The point B has coordinates $(3,-4)$

The tangents meet at the point P.
Work out the coordinates of the point P.
padus OB has grading -4
\therefore tangent $P B$ has gradient $3 / 4$ so $y=\frac{3}{4} x+C$

$$
\begin{aligned}
& x=3 \\
& y=-4
\end{aligned} \quad-4=\frac{3}{4} x^{3}+c \quad \therefore c=-\frac{25}{4}
$$

so $P B$ has equation $y=\frac{3}{4} x-\frac{25}{4}$ Apis the lure $y=5$

So $3 / 4 x-2 \frac{2}{4}=5$
$3 x-25=20$
$3 x=45 x=15$
20.

Prove that the angle in a semi-circle is always 90°
Let $\operatorname{cob}=x$
\therefore in triangle $C O B$, angle $\hat{B C O}=\frac{180 \cdot x}{2}=90-\frac{1}{2} x$
angle $\hat{\text { CAA }}=180^{\circ}$ (angles on a straight line add b 180°)
\therefore in triangle COA, angle $\hat{O C A}=1 / 2 x$
(since both triangles are isosceles, so angle $O \hat{C}=0 \hat{A C}$ and $\hat{O B C}=O \hat{C B}$)
\therefore angle $\hat{A C B}=\hat{B C O}+O \hat{C}$

$$
=90-12 x+12 x=90^{\circ}
$$

(3)

AOB is a triangle.
P is a point on $A O$.

$$
\overrightarrow{A B}=2 a \quad \overrightarrow{A O}=6 b \quad A P: P O=2: 1
$$

(a) Find the vector $\overrightarrow{O B}$ in terms of \mathbf{a} and \mathbf{b}

