GCSE

MATHEMATICS

 8300/3HHigher Tier
Paper 3 Calculator
Shadow paper based on June 2023 paper
Mark scheme
June 2023
Version: 1.0

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aqa.org.uk

[^0]Copyright © 2023 AQA and its licensors. All rights reserved.

Glossary for Mark Schemes

GCSE examinations are marked in such a way as to award positive achievement wherever possible. Thus, for GCSE Mathematics papers, marks are awarded under various categories.

If a student uses a method which is not explicitly covered by the mark scheme the same principles of marking should be applied. Credit should be given to any valid methods. Examiners should seek advice from their senior examiner if in any doubt.

M Method marks are awarded for a correct method which could lead to a correct answer.

A Accuracy marks are awarded when following on from a correct method. It is not necessary to always see the method. This can be implied.

B Marks awarded independent of method.
ft Follow through marks. Marks awarded for correct working following a mistake in an earlier step.

SC Special case. Marks awarded for a common misinterpretation which has some mathematical worth.

M dep A method mark dependent on a previous method mark being awarded.

B dep A mark that can only be awarded if a previous independent mark has been awarded.
oe \quad Or equivalent. Accept answers that are equivalent. eg accept 0.5 as well as $\frac{1}{2}$
[a, b] Accept values between a and b inclusive.
[a, b) \quad Accept values $a \leqslant$ value $<b$
3.14... Accept answers which begin 3.14 eg 3.14, 3.142, 3.1416

Use of brackets It is not necessary to see the bracketed work to award the marks.

Examiners should consistently apply the following principles.

Diagrams

Diagrams that have working on them should be treated like normal responses. If a diagram has been written on but the correct response is within the answer space, the work within the answer space should be marked. Working on diagrams that contradicts work within the answer space is not to be considered as choice but as working, and is not, therefore, penalised.

Responses which appear to come from incorrect methods

Whenever there is doubt as to whether a student has used an incorrect method to obtain an answer, as a general principle, the benefit of doubt must be given to the student. In cases where there is no doubt that the answer has come from incorrect working then the student should be penalised.

Questions which ask students to show working

Instructions on marking will be given but usually marks are not awarded to students who show no working.

Questions which do not ask students to show working

As a general principle, a correct response is awarded full marks.

Misread or miscopy

Students often copy values from a question incorrectly. If the examiner thinks that the student has made a genuine misread, then only the accuracy marks (A or B marks), up to a maximum of 2 marks are penalised. The method marks can still be awarded.

Further work

Once the correct answer has been seen, further working may be ignored unless it goes on to contradict the correct answer.

Choice

When a choice of answers and/or methods is given, mark each attempt. If both methods are valid then M marks can be awarded but any incorrect answer or method would result in marks being lost.

Work not replaced

Erased or crossed out work that is still legible should be marked.

Work replaced

Erased or crossed out work that has been replaced is not awarded marks.

Premature approximation

Rounding off too early can lead to inaccuracy in the final answer. This should be penalised by 1 mark unless instructed otherwise.

Continental notation

Accept a comma used instead of a decimal point (for example, in measurements or currency), provided that it is clear to the examiner that the student intended it to be a decimal point.

Q	Answer	Mark	Comments
$\mathbf{1}$	-3	B1	

Q	Answer	Mark	Comments	
3	$10 x-4 x$ or $6 x$ or $4 x-10 x$ or $-6 x$ or $13+17$ or 30 or $-17-13$ or -30	M1		
	5	A1		
	Additional Guidance			
	Answer 5 with no workin	ect wor		M1A1
	Embedded answer eg	$\times 5+$		M1A0

Q	Answer	Mark	Comments
$\mathbf{4}$	3.8×6500 or 24700 or $6500 \div 100$ or 6.5 or $3.8 \div 100$ or 0.038	M1	
	247	A1	

Q	Answer	Mark	Comments	
6	No ticked and correct reason or correct evaluation of the surface areas for any numerical or algebraic values or correct ratio of the surface areas	B2	eg 40 faces hidden B1 No ticked	
	Additional Guidance			
	Ignore irrelevant reasons or evaluations alongside a correct reason or evaluation, unless contradictory			
	"No" may be implied by a correct reason			
	Accept reasoning that uses A as a cube			
	No ticked and A has 6, B has 32 (condone sides for faces) A has $3, B$ has 16 A has 6 sides, on B each cube only has 3 or 2 Ratio is $3: 16$ (accept equivalent ratios) The inside is missing (or covered) When they are put together you lose two faces Some of the faces are covered You cannot see some sides because they are stacked together			B2 B2 B2 B2 B2 B2 B2 B2 B2
	Yes ticked or Cannot tell ticked			B0

Q	Answer	Mark	Comments	
7(b)	Plots at least three points correctly	M1	correct or ft their table in (a) $\pm \frac{1}{2}$ small square points may be implied by graph passing through them	
	Correct graph drawn through the five correct points	A1	$\pm \frac{1}{2}$ sm smooth	
	Additional Guidance			
	Correct graph drawn without plotting the correct points			M1A1
	Ignore any extra points plotted			
	Ignore any part of graph drawn for $x<-3$ or $x>1$			
	Ruled straight lines			A0

Q	Answer	Mark	Comments
8	Alternative method 1		
	$5625 \div(2+7)$ or $5625 \div 9$ or 625	M1	oe
	their 625×7 or 4375 or their 625×2 or 1250 or their $625 \div 5$ or 125	M1dep	$\begin{aligned} & \text { oe } \\ & 5625 \times \frac{7}{9} \text { is M2 } \\ & 5625 \times \frac{7}{9} \text { is M2 } \\ & 5625 \div 45 \text { is M2 } \end{aligned}$
	their $4375 \div 5$ or (5625 - their 1250) $\div 5$ or their 125×7 or 875	M1dep	oe dep on M2
	875 and Yes	A1	accept $875>870$
	Alternative method 2		
	870×5 or 4350	M1	
	$5625 \div(2+7)$ or $5625 \div 9$ or 625	M1	oe
	their 625×7 or 4375 or their 625×2 or 1250	M1dep	oe dep on 2nd M $5625 \times \frac{7}{9}$ is M2 $5625 \times \frac{2}{9}$ is M2
	4350 and 4375 and Yes	A1	

Additional Guidance is on the next page

8 cont	Additional Guidance	
	Up to M3 may be awarded for correct work, with no answer or incorrect answer, even if this is seen amongst multiple attempts	Yes may be implied eg They receive 5 more than 870
	Condone £875.00p and Yes	M3A11

Q	Answer	Mark	Comments		
10	Alternative method 1 - using sine of an angle				
	sin chosen or used	M1			
	$\sin 35=\frac{14}{x} \text { or } x=\frac{14}{\sin 35}$ or $x \times \sin 35=14$	M1dep	oe		
	[24.4, 25]	A1			
	Alternative method 2 - using cosine of an angle				
	cos chosen or used	M1			
	$\cos 55=\frac{14}{x} \text { or } x=\frac{14}{\cos 55}$ or $x \times \cos 55=14$	M1dep	oe		
	[24.4, 25]	A1			
	Alternative method 3 - finding adjacent first				
	$\begin{aligned} & \frac{14}{\tan 35} \text { or } 14 \times \tan 55 \\ & \text { or } 19.9(\ldots) \text { or } 20 \end{aligned}$	M1	oe		
	$\begin{aligned} & \sqrt{(\text { their } 19.9(\ldots))^{2}+14^{2}} \\ & \text { or } \sqrt{592 .(\ldots)} \\ & \text { or their } 19.9(\ldots) \div \cos 35 \\ & \text { or their } 19.9(\ldots) \div \sin 55 \end{aligned}$	M1dep	oe		
	[24.4, 25]	A1			
	Additional Guidance				
	Do not accept scale drawing				
	$\frac{\sin 35}{15}=\frac{\sin 90}{x}$				M1

Q	Answer	Mark	Comments	
11(a)	4 or 5	M1	May be implied by 2^{3} or 8	
	4 and 5 and $\frac{2}{40}$ or $\frac{1}{20}$ or 0.05	A1	May be implied by 2^{3} or 8	
	Additional Guidance			
	Do not allow exact calculations for M1A1 Eg 9.1039... $=9$ and $5.49=5$ and $\frac{2}{45}$			M1A0

Q	Answer	Mark	Comments	
11(b)	Valid explanation	B1	eg the numbers on the bottom have been rounded down so that means it will make a larger number when it is divided into the top	
	Additional Guidance			
	Ignore irrelevant reasons alongside a correct reason, unless contradictory			
	Ignore a calculation using exact values alongside a correct reason eg 0.05 is greater than $0.040(\ldots)$ with valid explanation			B1
	0.05 is greater than 0.040 (...)			B0
	The denominator is larger in the unrounded version			B1
	The denominator is smaller in the estimation			B1
	2 is divided by more (with answer less)			B1
	Estimating rounds the numbers down which makes the denominator less			B1
	Estimating rounds the numbers down which makes it less			B0

Q	Answer	Mark		Comme
12(a)	Bill and valid reason	B1	eg spun the mos	st times
	Additional Guidance			
	Do not accept an incorrect reason alongside a correct response			
	Do not accept reasons which refer to the probability increasing			
	Ignore reasons that refer to results being more accurate			

Q	Answer	Mark	Comments
$\mathbf{1 2 (c)}$	175×0.64 or 112 or $1-0.64$ or 0.36	M1	oe
	63	A1	

Q	Answer	Mark	Comments	
13	$90 \div 50$ or 1.8 or $\frac{9}{5}$ or 1 h 48 mins	M1	oe eg 108 mins implied by 1003 am	
	$(154-90) \div 47$ or $64 \div 47$ or $1.361 \ldots$ or $\frac{64}{47}$ or 1 h 21 mins (42. (...) secs)	M1	oe eg 81.702 (...) mins	
	their $1.8 \ldots+$ their 1.21 or $\frac{743}{235}$ or $[3.01,3.16]$ or 3h 10 mins or [11 24 (am), 11.25(am)]	M1dep	oe eg 189.7 ... mins dep on M2 accept 3 hrs 9 mins 42 secs for 3 h 10 mins implied by adding times eg $8.25+1.8+1.36 \ldots$	
	3.25 and $[3.01,3.26]$ and $Y e s$ or 3h 10 mins and 3 h 15 mins and Yes or 190 mins and 195 mins and Yes or [11 $25(\mathrm{am}), 11.26(\mathrm{am})$] and Yes	A1	oe arrival time must be in a comparable time format	
	Additional Guidance			
	Up to M3 may be awarded for correct work seen in multiple attempts even if not subsequently used			
	Accept use of 24 hour clock throughout			
	Do not accept 1125 pm as a correct arrival time			

Q	Answer	Mark	Comments	
14	$600 \div 0.2$ or 600×5 or 3000	M1	oe	
	17700	A1		
	(their $17700-6500) \times 0.1575$ or 11200×0.1575	M1	their 17700 must be >6500 full method to calculate National Insurance	
	1764	A1ft	ft their 17700, which must	> 6500
	Additional Guidance			
	Accept final answer rounded or truncated to the nearest pound if a more accurate value is seen in working			
	Do not accept ' 15.75% of 11200 ' or $15.75 \% \times 11200$ for M mark unless accompanied by a correct method or value			
	3000×0.1575 or $472.5(0)$			M1A0M0AOft

Q	Answer	Mark	Comments
15(a)	$\begin{aligned} & 48 \div(320-260) \\ & \text { or } \\ & 48 \div 60 \\ & \text { or } \\ & 0.8 \end{aligned}$	M1	may be on diagram
	$\begin{aligned} & 40 \times 2.4(=96) \\ & 20 \times 3.6(=72) \\ & 20 \times 1.6(=32) \end{aligned}$	M1dep	allow 1 error or 1 omission or 1 misread of a frequency density value may be on diagram.
	200	A1	

Q	Answer	Mark	Comments	
15(b)	Rectangular box plot with whiskers to 150 and 200	B1		
	Lower quartile drawn at 163 and median drawn at 172	B1		
	Upper quartile drawn at 187	B1ft	correct or ft their lower qua must be the vertical line at their box	24 de of
		tional	idance	
	Mark intention eg any height and al	horizo	l line through centre of box	
	Allow ends of whiskers to be vertica stops	es of	length, dots, crosses or	
	$\pm \frac{1}{2}$ small square tolerance			
	Median must be the second vertica	e of a	with three vertical lines	
	Only vertical lines or points plotted			B0

Q	Answer	Mark	Comments	
16	Alternative method 1 - using Pythagoras' theorem or 5, 12, 13 triangle			
	$39 \div 13 \times 5 \text { or } 15(\mathrm{~cm})$ or identifies triangle as $5,12,13$	M1	oe length of a may be on diagram	
	$\begin{aligned} & \sqrt{39^{2}-(\text { their } 15)^{2}} \\ & \text { or } \sqrt{1521-225} \\ & \text { or } \sqrt{1296} \\ & \text { or } 3 \times 12 \end{aligned}$	M1dep		
	36 (cm)	A1	length of b may be on diagram	
	270	A1ft	ft $\frac{1}{2} \times$ their $36 \times$ their 15 awarded	th M2
	Alternative method 2 - using trigonometry and $1 / 2 a b \sin C$ formula			
	$39 \div 13 \times 5$ or 15 (cm)	M1	oe length of a may be on diagram	
	$\cos ^{-1}\left(\frac{15}{39}\right)$ or $67.3(\ldots)$ or 67.4	M1dep	angle between sides a and	
	$\frac{1}{2} \times 39 \times 15 \times \sin ($ their $67.3(\ldots))$	M1dep	dep on M2	
	270	A1		
	Additional Guidance			
	$\frac{1}{2} \times 39 \times 15 \times \sin 90$			M1M1M1

Q	Answer	Mark	Comments
17	Alternative method 1 - multiplies through by 10 or common denominator of 10		
	$4(x-4)+3(10-x)$ or $4 x-16+30-3 x$	M1	oe numerator on the left-hand side if written as a fraction allow one error or omission in the expansion if brackets not seen eg $4 x+30-3 x$
	$x+14$	A1	
	their $(x+14)=1 \times($ their 12$)$ or their $(x+14)=12$ or $x+2=0$	M1	oe allow an unsimplified expression for their $(x+14)$ equation may be implied by answer
	-2	A1ft	ft M1A0M1
	Alternative method 2 - collects terms with fractions		
	$\frac{x}{3}-\frac{4}{3}+\frac{10}{4}-\frac{x}{4}$	M1	$\text { oe eg } \frac{1}{3} x-\frac{4}{3}+2.5-0.25 x$ allow one error
	$\frac{1}{12} x+\frac{7}{6}$	A1	oe
	$\frac{1}{12} x=1-\frac{7}{6}$ or $\frac{1}{12} x=-\frac{1}{6}$	M1	oe terms must be collected
	-2	A1ft	ft M1A0M1

Additional Guidance is on the next page

$\begin{gathered} 17 \\ \text { cont } \end{gathered}$	Additional Guidance	
	Accept decimal answers for follow through correct to 1 dp or better	
	Apply the principles of alt 1 for any use of other common denominators eg common denominator of 24 (or multiplication through by 24) $\begin{aligned} & 8(x-4)+6(10-x)=2 x+28 \\ & 2 x+28=24 \quad x=-2 \end{aligned}$	M1A1 M1A1
	An incorrect simplification of $4 x-16+30-3 x$ may still gain the third and fourth marks eg $4 x-16+30-3 x=x+46$ followed by $x+46=12$ and $x=-34$	M1A0M1 A1ft M1A0M1 A1ft
	An incorrect denominator may still gain the third and fourth marks $\frac{4 x-16+30-3 x}{7}$ followed by $4 x-16+30-3 x=7$ and $x=-7$	M1A0M1 A1ft
	Denominator not processed $x+14=1$ followed by $x=-13$	M1A1M0A0
	$(x-4)+(10-x)=12$	M0A0M1A0

Q	Answer	Mark	Comments
18(a)	$3(x+3)^{2}-(x+3)$	M1	may be seen in a grid
	$3\left(x^{2}+6 x+9\right)-x-3$ or $3 x^{2}+18 x+27-x-3$	M1dep	fully expanded expression with terms summed allow one omission or one arithmetic error
	$3 x^{2}+18 x-x+27-3$ and $3 x^{2}+17 x+24$	A1	
	Additional Guidance		
	$3 x^{2}+27-x+3$ is two err		

Q	Answer	Mark	Comments	
18(b)	$3 x^{2}+17 x+19(=0)$	M1	must be correct	
	$\begin{aligned} & x=\frac{-17 \pm \sqrt{17^{2}-4(3)(19)}}{2 \times 3} \\ & \text { or } x=\frac{-17 \pm \sqrt{61}}{6} \end{aligned}$	M1dep	oe implies first M1	
	$(x=)-4.14$ and $(x=)-1.53$	A1	cao	
	Additional Guidance			
	SC2 from using $3 x^{2}+17 x+29(=0)$			
	Trial and improvement with both answers correct and chosen from any list			M1M1A1
	Trial and improvement with one answer correct			MOMOAO

Q	Answer	Mark	Comments	
19	Creates an algebraic product in the form $(x+a)(x+b)$ where there is a difference of 2 between a and b	M1	accept any letter for x eg $x(x+2)$ or $x^{2}+2 x$ or $x(x-2)$ or $x^{2}-2 x$	
	Correctly expands their product, adds 1 and simplifies to a quadratic expression	M1dep	eg $x^{2}+2 x+1$ or $x^{2}-2 x+1$	
	Correctly factorises their quadratic expression to the form $(x+c)^{2}$ with M2 awarded	A1	eg $(x+1)^{2}$ or $(x-1)^{2}$	
	Additional Guidance			
	Trialling integers scores no marks, but ignore any testing of values alongside correct algebra			
	Ignore any further work or attempts to solve after correct answer seen			
	Missing brackets may be recovered, eg $x \times x+2$ followed by $x^{2}+2 x+1$			M1M1
	$(x+1)(x+1)$ without $(x+1)^{2}$ seen does not score the A mark			

Q	Answer	Mark	Comments	
20(a)	Substitutes a correct pair of coordinates and states that the equation is incorrect	B1	eg $E=\frac{14}{2}=7$ and the graph is $[7.4,7.5]$ so he is wrong.	
	Additional Guidance			
	Accept 'No' or a cross or any clear indication that he is incorrect			
	Do not accept pairs of values not on the graph			
	Do not accept a correct answer alongside an incorrect response unless clearly chosen			
	Do not accept a coordinate with no substitution seen			

Q	Answer	Mark	Comments	
20(b)	Alternative method 1			
	$G \propto H^{2}$ or $G=k H^{2}$ or $10 \div 1 \times 5=k(100)$ or $50=k(100)$	M1	k may be any letter	
	$k=\frac{50}{100} \text { or } k=0.5$ or $G=$ their $0.5 H^{2}$	M1dep	their 50 must be the result of $10 \div 1 \times 5$	
	their $0.5 \times$ their 20^{2} or 200	M1dep	dep on M2	
	200:20 or 10:1	A1	oe ratio	
	Alternative method 2			
	$20 \div 10$ or 2	M1		
	2^{2} or 4	M1dep		
	$\begin{aligned} & 5 \times \text { their } 4 \text { or } 20 \\ & \text { or } \\ & 50 \times \text { their } 4 \text { or } 200 \end{aligned}$	M1dep	dep on M2	
	200:20 or 10:1	A1	oe ratio	
	Additional Guidance			
	Ignore an incorrect attempt to simplify a correct ratio eg 200:20 followed by $20: 10$			M1M1M1A1
	$k=0.5$ implies M2 unless from incorrect working			
	$G \alpha k H^{2}$ is M0 unless recovered			

Q	Answer	Mark	Comments
$\mathbf{2} \mathbf{2 1}$	$7 \times 5 \times 6$ or	$7 \times 5+7 \times 5$	
	210 or 70		
	Maximum 210 and Minimum 70	A1	

Q	Answer	Mark	Comments
22	Reflection	B1	
	Straight line drawn on diagram passing through the points $(0,7)$ and (7,0)	B1	soi getting a correct answer of $x+y=7$ oe implies this mark.
	In the line $x+y=7$	B1	oe eg $y=7-x$
	Additional Guidance		
	Do not accept rotation as the firs Do not accept "mirror" or "flip" for		

Q	Answer	Mark	Comments	
23(a)	Angle $Y X Z=38$ and Angle $Y Z X=64$ and sine rule indicated	M1	May be seen on diag If sine and cosine rule must be clear that the selected as the one to	then it as been
	$\frac{206 \times \sin 38}{\sin 64}=141.10 \ldots$	A1	$Y Z=141.1071473 .$.	
	Additional Guidance			
	Using sine rule with $\sin 38$ and sin64 transposed			M1A0

Q	Answer	Mark	Comments		
23(b)	Alternative method 1				
	$16 \times 1.5(=24)$ or $18 \times 1.5(=27)$ or $240\left({ }^{\circ}\right)-157\left(\left(^{\circ}\right)=83\left({ }^{\circ}\right)\right.$ or $360\left({ }^{\circ}\right)-240\left({ }^{\circ}\right)=120\left({ }^{\circ}\right)$ or $180\left({ }^{\circ}\right)-120\left(\left(^{\circ}\right)=60\left({ }^{\circ}\right)\right.$	M1	Values may be seen on a diagram as above.		
	$\begin{aligned} & A B=\sqrt{24^{2}+27^{2}-(2 \times 24 \times 27 \times \cos 83)} \\ & (=33.8682 \ldots) \end{aligned}$	M1ft	If a diagram is seen for M 1 then ft their 27, 24 and 83 if it has been clearly substituting into the cosine formula		
	$\begin{aligned} & \sin ^{-1}\left(\frac{24 \sin 83}{\text { their } 33.8682 \ldots}\right) \\ & (=44.69651534 \ldots) \end{aligned}$	M1ft	Use of sine rule to calculate angle $O B A$. Again if a diagram is seen then ft their values if they are clearly substituted into the sine rule formula		
	105°	A1	or better104.69651534		
	Additional Guidance				
	There is no follow through from part (a)				
	Accept any notation for the angle, eg $\sin x$ or $\sin C$ for angle $O B A$				

[^0]: Copyright information
 AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

