AQA

GCSE MATHEMATICS

2023 PRACTICE PAPER SET 2 Foundation Tier Paper 1
Mark Scheme

Principal Examiners have prepared these mark schemes for specimen papers. These mark schemes have not, therefore, been through the normal process of standardising that would take place for live papers.

Further copies of this Mark Scheme are available from aqa.org.uk

Glossary for Mark Schemes

GCSE examinations are marked in such a way as to award positive achievement wherever possible. Thus, for GCSE Mathematics papers, marks are awarded under various categories.
If a student uses a method which is not explicitly covered by the mark scheme the same principles of marking should be applied. Credit should be given to any valid methods. Examiners should seek advice from their senior examiner if in any doubt.

M	Method marks are awarded for a correct method which could lead to a correct answer.
A	Accuracy marks are awarded when following on from a correct method. It is not necessary to always see the method. This can be implied.
B	Marks awarded independent of method.
Ft	Follow through marks. Marks awarded for correct working following a mistake in an earlier step.
SC	Special case. Marks awarded within the scheme for a common misinterpretation which has some mathematical worth.
A method mark dependent on a previous method mark being	
awarded.	

Examiners should consistently apply the following principles

Diagrams

Diagrams that have working on them should be treated like normal responses. If a diagram has been written on but the correct response is within the answer space, the work within the answer space should be marked. Working on diagrams that contradicts work within the answer space is not to be considered as choice but as working, and is not, therefore, penalised.

Responses which appear to come from incorrect methods

Whenever there is doubt as to whether a student has used an incorrect method to obtain an answer, as a general principle, the benefit of doubt must be given to the student. In cases where there is no doubt that the answer has come from incorrect working then the student should be penalised.

Questions which ask students to show working

Instructions on marking will be given but usually marks are not awarded to students who show no working.

Questions which do not ask students to show working

As a general principle, a correct response is awarded full marks.

Misread or miscopy

Students often copy values from a question incorrectly. If the examiner thinks that the student has made a genuine misread, then only the accuracy marks (A or B marks), up to a maximum of 2 marks are penalised. The method marks can still be awarded.

Further work

Once the correct answer has been seen, further working may be ignored unless it goes on to contradict the correct answer.

Choice

When a choice of answers and/or methods is given, mark each attempt. If both methods are valid then M marks can be awarded but any incorrect answer or method would result in marks being lost.

Work not replaced

Erased or crossed out work that is still legible should be marked.

Work replaced

Erased or crossed out work that has been replaced is not awarded marks.

Premature approximation

Rounding off too early can lead to inaccuracy in the final answer. This should be penalised by 1 mark unless instructed otherwise.

| Q Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |

$\mathbf{1}$	Any multiple of 6, eg 6 or 12	B1	
$\mathbf{2}$	Any two numbers where the first number is less than the second	B1	eg 3 and 5

6	$10 a+b$	B2	Condone $1 b$ for b B1 $10 a$ or b	
	Additional Guidance			
	Do not ignore further work for B2 eg $10 a+b=11 a b$			B1

Q	Answer	Mark	Comments
8(a)	9	B1	
8(b)	$19+1$ or 20	M1	
	10	A1	SC1 10.5

9(a)	$\frac{6}{7}$	B1	
9(b)	$\frac{3}{8} \times \frac{10}{7}$	M1	
	$\frac{30}{56}$ or $\frac{15}{28}$	A1	

$\mathbf{1 0}(\mathbf{a})$	6×2 or 12 and 3×-1 or -3	M1	oe
	9	A1	
$\mathbf{1 0 (b)}$	80	B1	

11(a)	10	B1		
11(b)	$2 n+2$	B1		
11(c)	Yes and valid reason	B1	eg $2(n+1)$ $2 n+2$ is a multiple of $2 n+2$ is divisible by 2 It is the 2 times table It is a multiple of 2 It starts even and then add	time
	Additional Guidance			
	Even + even $=$ even			B1
	Even $+2=$ even			B1
	Because you add 2 all the time			B0

| Q Answer | Mark | Comments |
| :--- | :--- | :--- | :--- |

12	$\frac{1}{3}$	B1	
13	$3 x+2 x+90=180$	M1	oe 54 and/or 36 in correct place on diagram
	$3 x+2 x=180-90$ or $5 x=90$	M1dep	oe Collecting terms
	18	A1	

$\mathbf{4} 4$	$63 \div 12$ or $5.2 \ldots 5$ r 3 or 5 or $12,24,36,48,60$ and 72 seen	M1	oe
	$27 \div 8$ or $3.3 \ldots 3$ r 3 or 3 or $8,16,24$ and 32 seen	M1	oe
	6 or 4	A1	From either M1
	10	A1	Condone 6 (for squash) and 4 (for coffee)

15(a)	64 and 36	B2	Either order B1 for two square greater than 80 or 8 and 6 or 8^{2} and 6^{2}	total
15(b)	No and two square numbers correctly added to give an odd number	B1	eg No and $4+9$ No and $2^{2}+3^{2}=$	
	Additional Guidance			
	Even square + odd square = odd number (correctly evaluated) with No			B1
	$4+9=13$ (Not stated No)			B0

| Q Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |

16	Alternative method 1		
	12 or 10 or 22	M1	
	44	A1	
	Alternative method 2		
	$\begin{aligned} & 6 x-10 y \\ & \text { or } 24 \text { or } 20 \end{aligned}$	M1	
	44	A1	
17	$5(3 x+y)$	B1	

| Q Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |

19(a)	$\frac{3}{5}$	B1	oe
19(b)	Alternative method 1		
	25 outcomes for 2 spins	M1	Implied by a probability with denominator 25 or by a 5 by 5 possibility space diagram
	One way of attaining 8	M1	eg in a possibility space diagram or sight of $4+4$ or $1 / 5$ seen twice
	$\frac{1}{25}$	A1	oe
	Alternative method 2		
	$\frac{1}{5}, \frac{1}{5}$	M1	oe
	$\frac{1}{5} \times \frac{1}{5}$	M1	oe
	$\frac{1}{25}$	A1	oe

$\mathbf{2 0 (a)}$	$88+92(+18)$ or $180(+18)$ or 198	M1	
	M1dep	oe $64+x-18=88+92$	oe
	134	A1	SC1 for 98

$\mathbf{2 2}(\mathrm{a})$	$30 \div(7+3)$ or 3	M1	oe
	21	A1	

Q Answer	Mark	Comments		
22(b) $12 \div 3$ or 4 M1 4×7 or 28 M1dep 40 A1 SC1 50				40
:---				

$\mathbf{2 5}$	6.16×10^{4}	B1	

$\mathbf{2 6}$	$\sqrt{30}>5$	B1	oe May be implied by numerator is negative
	negative \div positive $=$ negative and No	B1	

$\mathbf{2 7}$	$\frac{10}{100} \times 200000$ or 20000 or 1.1×200000 or 220000 or $1.1^{2} \times 200000$ or 1.21×200000	M1	oe
	242000	A1	SC1 for 240000

| Q Answer | Mark | Comments |
| :--- | :--- | :--- | :--- |

$\mathbf{2 8}$	A pair of intersecting arcs of equal radii from ends of line with two intersections	M1	oe
	Perpendicular line drawn through points of intersection	A1	1 mm tolerance

29	$8^{2}+6^{2}$ or $64+36$ or 100	M1	
	M1dep	oe	
	A1	oe eg the diagonal of the rectangle is equal to the diameter two intersecting diagonals of length 10 cm touch the outside of circle so all rectangles whose diagonal is of length10 cm can be cut from the circle	

Copyright information

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Copyright © 2022 AQA and its licensors. All rights reserved.

