AQA

Please write clearly, in block capitals.

Centre number | | | | | |
| :--- | :--- | :--- | :--- | :--- | Candidate number \square

Surname \qquad

Forename(s)
Candidate signature \qquad

GCSE

Higher Tier

Paper 1 Non-Calculator

Time allowed: 1 hour 30 minutes

Materials

For this paper you must have:

- mathematical instruments

You must not use a calculator.

Instructions

- Use black ink or black ball-point pen. Draw diagrams in pencil.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- Do all rough work in this book. Cross through any work you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 80 .
- You may ask for more answer paper, graph paper and tracing paper. These must be tagged securely to this answer book.

For Examiner's Use	
Pages	Mark
$2-3$	
$4-5$	
$6-7$	
$8-9$	
$10-11$	
$12-13$	
$14-15$	
$16-17$	
$18-19$	
$20-21$	
$22-23$	
$24-25$	
TOTAL	

Advice

- In all calculations, show clearly how you work out your answer.

1 (a) Write down a number with value greater than 2.33 and less than 2.3

Answer

\qquad

1 (b) Write down a fraction with value between $\frac{1}{5}$ and $\frac{1}{4}$
\qquad
\qquad

Answer \qquad

2 Here is a sequence.
15
19
23
27
31

Work out an expression for the nth term of the sequence.
\qquad
\qquad
\qquad
\qquad

Answer \qquad

Give your answer in standard form.
3 Work out the value of 300^{2}
\qquad
\qquad
\qquad
\qquad

Answer

Answer \qquad

Turn over for the next question

5 The scatter graph shows the number of driving lessons and the number of tests needed to pass by 10 people.

5 (a) Describe the correlation.
Circle your answer.
strong positive weak positive weak negative strong negative

5 (b) Use a line of best fit to estimate the number of tests needed to pass by a person who has 50 lessons.
[2 marks]
\qquad
\qquad
\qquad

Answer \qquad

5 (c) Meera says,
"I can use the trend to predict the number of driving tests needed to pass for any number of driving lessons."

Comment on their statement.
\qquad
\qquad
\qquad
\qquad
$6 \quad$ Which of $\frac{7}{8}$ or $1 \frac{1}{5}$ is closer in value to 1 ?
You must show your working.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Answer \qquad

Turn over for the next question

$a+2 b=16.5$
Work out the values of a and b.
$a=$ \qquad
$b=$

Answer \qquad

| Five integers have: | |
| :--- | :--- | :--- |
| \quada mode of 1
 a median of 2
 a mean of 3 | |
| What is the greatest possible range of the five integers? | |
| You must show your working. | [3 marks] |

\qquad
\qquad
\qquad

Answer \qquad

Turn over for the next question

10 A shape is made from rectangles.

10 (a) On the diagram below shade an area represented by the expression cd .
[1 mark]

10 (b) On the diagram below shade an area represented by the expression $2 a b$.

10 (c) Write down an expression for the area of the whole shape.

Answer \qquad

Turn over for the next question

11 Alan, Ben and Carl ran a 1000 metre race.
The distance-time graph shows the race.

11 (a) Who won the race?
Give a reason for your answer.
[2 marks]

Answer \qquad

Reason \qquad
\qquad
\qquad

11 (b) Describe the race.
Mention each runner at least once.
\qquad

Turn over for the next question

12 Here is a map of France.

Scale: 1 cm represents 80 km

12 (a) Estimate the time it would take to drive from Nantes to Paris.
Assume

- the road is straight
- an average speed of $100 \mathrm{~km} / \mathrm{h}$
\qquad
\qquad
\qquad
\qquad
\qquad

Answer \qquad hours

12 (b) Comment on how each assumption affects the accuracy of your estimate.

Assumption 1

\qquad
\qquad
\qquad

Assumption 2 \qquad
\qquad
\qquad

13 Write $4(3 x+2)+2(x-3)+19$ in the form $a(b x+c)$
where a, b and c are integers and $a>1$
[3 marks]
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Answer \qquad

14 The diagram shows a small triangle which is also part of a large triangle.

Work out the value of x.
\qquad
\qquad

Answer

15 The shape is rotated 180° about point A. It is then enlarged by scale factor -2 , centre B.

Draw the final shape on the diagram.

16 Rearrange $d=\frac{3+2 c}{c-7}$ to make c the subject.
[4 marks]
\qquad

Answer \qquad

17 The diagram shows a rectangle inside a semicircle.
The rectangle has dimensions 24 cm by 5 cm .

Not drawn

Work out the shaded area.
Give your answer in terms of π.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Answer \qquad cm^{2}
18 Work out the value of $16^{-\frac{1}{2}} \quad$ [2 marks]

Answer

19 Expand and simplify $(x+6)(x-6)(3 x-5)$
\qquad

Answer

20 A cuboid has dimensions $x \mathrm{~cm}, x \mathrm{~cm}$ and $y \mathrm{~cm}$.

x is increased by 20%
y is decreased by 10%

Work out and describe the percentage change in the volume of the cuboid.
[4 marks]
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Answer \qquad

Turn over for the next question

21 Two straight lines are shown.
B is the midpoint of $A C$.
$T B: B S=2: 3$

Work out the coordinates of T.
[4 marks]
\qquad
\qquad
\qquad
\qquad
\qquad

Answer (\qquad , \qquad)

22 Write $\frac{18}{\sqrt{2}}-\frac{12}{\sqrt{32}}$ in the form $\frac{a \sqrt{2}}{b}$ where a and b are integers.
\qquad

Answer \qquad

Turn over for the next question

23 (a) The graph of $y=\sin x$ is shown for $0^{\circ} \leqslant x \leqslant 360$.
On the grid sketch the graph of $y=\sin x+1$ for $0^{\circ} \leqslant x \leqslant 360^{\circ}$

23 (b) The graph of $y=\sin x$ is shown on the grid for $0^{\circ} \leqslant x \leqslant 360^{\circ}$ On this grid sketch the graph of $y=-\sin x$ for $0^{\circ} \leqslant x \leqslant 360^{\circ}$

23 (c) On this grid sketch the graph of $y=\cos x$ for $0^{\circ} \leqslant x \leqslant 360^{\circ}$.

24 A bag contains n beads.
One bead is black and the rest are white.
Two beads are taken from the bag at random.

24 (a) Show that the probability that both beads are white is $\frac{n-2}{n}$
[2 marks]
\qquad
\qquad
\qquad
\qquad

24 (b) The probability that both beads are white is greater than 0.8 .
Work out the least possible value of n.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Answer \qquad
$25 \quad A B C D$ is a parallelogram.
$A B E$ is a straight line and $A B: B E=4: 3$
$B C$ and $E D$ intersect at F.
$\overrightarrow{A B}=\mathbf{a}$ and $\overrightarrow{A D}=\mathbf{b}$

25 (a) Work out $E D$ in terms of \mathbf{a} and \mathbf{b}.
Give your answer in its simplest form.
\qquad
\qquad
\qquad
\qquad
\qquad

Answer \qquad

25 (b) Deduce $\overrightarrow{E F}$ in terms of \mathbf{a} and \mathbf{b}.
\qquad
\qquad

Answer \qquad

END OF QUESTIONS

There are no questions printed on this page

DO NOT WRITE ON THIS PAGE

Copyright information

For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is published after each live examination series and is available for free download from www.aqa.org.uk.

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.

Copyright © 2022 AQA and its licensors. All rights reserved.

