AQA

GCSE MATHEMATICS

2023 PRACTICE PAPER SET 2 Higher Tier Paper 1
Mark Scheme

Principal Examiners have prepared these mark schemes for specimen papers. These mark schemes have not, therefore, been through the normal process of standardising that would take place for live papers.

Further copies of this Mark Scheme are available from aqa.org.uk

Glossary for Mark Schemes

GCSE examinations are marked in such a way as to award positive achievement wherever possible. Thus, for GCSE Mathematics papers, marks are awarded under various categories.
If a student uses a method which is not explicitly covered by the mark scheme the same principles of marking should be applied. Credit should be given to any valid methods. Examiners should seek advice from their senior examiner if in any doubt.

M	Method marks are awarded for a correct method which could lead to a correct answer.		
A	Accuracy marks are awarded when following on from a correct method. It is not necessary to always see the method. This can be implied.		
B	Marks awarded independent of method.		
ft	Follow through marks. Marks awarded for correct working following a mistake in an earlier step.		
SC	Special case. Marks awarded within the scheme for a common misinterpretation which has some mathematical worth.		
M method mark dependent on a previous method mark being			
awarded.		\quad	A mark that can only be awarded if a previous independent mark
:---			
has been awarded.			

Examiners should consistently apply the following principles

Diagrams

Diagrams that have working on them should be treated like normal responses. If a diagram has been written on but the correct response is within the answer space, the work within the answer space should be marked. Working on diagrams that contradicts work within the answer space is not to be considered as choice but as working, and is not, therefore, penalised.

Responses which appear to come from incorrect methods

Whenever there is doubt as to whether a student has used an incorrect method to obtain an answer, as a general principle, the benefit of doubt must be given to the student. In cases where there is no doubt that the answer has come from incorrect working then the student should be penalised.

Questions which ask students to show working

Instructions on marking will be given but usually marks are not awarded to students who show no working.

Questions which do not ask students to show working

As a general principle, a correct response is awarded full marks.

Misread or miscopy

Students often copy values from a question incorrectly. If the examiner thinks that the student has made a genuine misread, then only the accuracy marks (A or B marks), up to a maximum of 2 marks are penalised. The method marks can still be awarded.

Further work

Once the correct answer has been seen, further working may be ignored unless it goes on to contradict the correct answer.

Choice

When a choice of answers and/or methods is given, mark each attempt. If both methods are valid then M marks can be awarded but any incorrect answer or method would result in marks being lost.

Work not replaced

Erased or crossed out work that is still legible should be marked.

Work replaced

Erased or crossed out work that has been replaced is not awarded marks.

Premature approximation

Rounding off too early can lead to inaccuracy in the final answer. This should be penalised by 1 mark unless instructed otherwise.

| Q Answer Mark Comments
 $\mathbf{1}$ x^{2} or $3 x$ M1
 $x^{2}+3 x$ A 1
 $\mathbf{2}$ 6.16×10^{4} B 1
 $\mathbf{3}$ $\frac{1}{20}$ B 1
 $\mathbf{4}$ $n+1$ B 1
 \begin{tabular}{\|l|l|l|}
\hline
\end{tabular} \begin{tabular}{l}
\hline
\end{tabular}

5	A pair of intersecting arcs of equal radii from ends of line with two intersections	M1	oe
	Perpendicular line drawn through points of intersection	A1	1 mm tolerance

6	Alternative method 1		
	$\begin{aligned} & \text { radius }=12 \div 4 \text { or } 3 \\ & \text { or diameter }=12 \div 2 \text { or } 6 \\ & \text { or } 12 \times 6 \text { or } 72 \end{aligned}$	M1	
	$\pi \times$ their 3^{2} or 9π	M1	
	$2 \times \pi \times$ their 3^{2} or 18π	M1dep	
	$72-18 \pi$	A1	Ignore attempts at factorisation Do not ignore further work

| Q Answer | Mark | Comments |
| :--- | :--- | :--- | :--- |

7	$12 \div 3$ or 4	M1	
	4×7 or 28	M1dep	
	40	A1	SC1 50

8(a)	180-125 or 55	M1	
	$125 \div 50$ or 2.5 or 2 h 30 minutes	M1	oe
	their $55 \div 60$ or $11 / 12 \mathrm{~h}$ or 55 min	M1dep	Dependent on 1st M1 or subtracting 25 from their distance oe
	3 hours and 25 minutes	A1	205 mins
8(b)	(The journey will) take longer	B1	oe
	Additional Guidance		
	More time	B1	
	(The journey will) be slower	B0	

| Q Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |

9	$\frac{20}{32}$ or $\frac{15}{24}$	B1	oe 0.625 or 62.5\%	
	A correct probability from each bag, with attempt at a comparable form, with at least one correct	M1	eg denominator same for both $\frac{60}{96}$ twice, $\frac{5}{8}$ twice oe or 0.625 twice or 62.5% twice	
	No ticked AND both probabilities correct and in the same format	A1	eg No both the same with the correct value given	
	Additional Guidance			
	if same ratio (e.g. 5:3 or 3:5) seen for both and tick NO			B1M1A1

$\mathbf{1 0}$	$\sqrt{30}>5$	B1	oe May be implied by numerator is negative
	negative \div positive $=$ negative and No	B1	

11	$\frac{10}{100} \times 200000$ or 20000 or 1.1×200000 or 220000 or $1.1^{2} \times 200000$ or 1.21×200000	M1	oe
	242000	A1	SC1 240000

| Q Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |

12	Alternative method 1		
	$6^{2}+8^{2}$ or $36+64$ or 100	M1	
	$\sqrt{8^{2}+6^{2}}$ or $\sqrt{100}$	M1dep	oe
	$\sqrt{100}=10=$ diameter	A1	oe eg the diagonal of the rectangle is equal to the diameter two intersecting diagonals of length 10 cm touch the outside of circle so all rectangles whose diagonal is of length 10 cm can be cut from the circle

13	4	B1		
14	$\begin{aligned} & 5 x^{2}-15 x+2 x-6 \\ & \text { or } \quad 5 x^{2}-13 x-6 \end{aligned}$	M1	4 terms with at least 3 correct or 3 terms with at least 2 correct	
	$\begin{aligned} & 5 x^{2}+(a-\text { their } 13) x-\text { their } 6+b \\ & \text { or } \quad a \text { - their } 13=-16 \\ & \text { or } \quad b \text { - their } 6=7 \end{aligned}$	M1		
	$a=-3$	A1		
	$b=13$	A1		
	Additional Guidance			
	$a-$ their $13=-16, \quad a=-3$			M1A1
	$a-$ their $13=-16, \quad a=-3$ and $b-6=7, b=13$			M1A1M1A1
	$-3 x+13$			M1A1M1A1

Q	Answer	Mark	Comments
15	$1 \frac{5}{6} \div 4 \frac{1}{8}$ or $\frac{11}{6}$ and $\frac{33}{8}$	M1	oe eg $\frac{44}{24}$ and $\frac{99}{24}$
	$\frac{11}{6} \div \frac{33}{8}$ or $\frac{11}{6} \times \frac{8}{33}$ or $\frac{8}{18}$	M1	oe unsimplified correct fraction
	$\frac{4}{9}$	A1	

16	3	B1	
	$\frac{1}{2^{2}}$ or $\frac{1}{4}$ or 0.25	M1	$\frac{3}{4}$ scores B1M1
	0.75	A1	

17(a)	Probability of red(and/or blue) is not $\frac{1}{3}$ or Probability of red is $\frac{1}{4}$	B1	oe
	He should multiply the answer by 2	B1	Any statement implying there are two ways the outcome is satisfied
17(b)	$\sqrt{\frac{25}{81}}$ or $\frac{\sqrt{25}}{\sqrt{81}}$ or $\frac{5}{9}$	M1	
	$360 \times$ their $\frac{5}{9}$	M1dep	oe
	200	A1	

Q	Answer	Mark	Comments
$\mathbf{1 8} \mathbf{1 8}$	$\frac{16 x+12}{12}$ or $\frac{6 x-15}{12}$ or $16 x+12$ and $6 x-15$	M1	oe Eg with brackets in the numerator
	$\frac{16 x+12}{12}+\frac{6 x-15}{12}=\frac{22 x-3}{12}$	A1	

19	10	B1	
20	$\frac{1}{2}$	B1	oe

21	Alternative method 1			
	$10 x=3.666$ and $9 x=3.3$	M1	oe method	$100 x=36.66 \ldots$ and $99 x=36.3$
	$\frac{33}{90}$	M1	oe fraction	$\frac{363}{990}$
	$\frac{11}{30}$	A1ft	Correct simplification of their fraction and M1 scored	
	Alternative method 2			
	$0.3+0.066 \ldots=\frac{3}{10}+0.066 \ldots$ and $100 x=6.66 \ldots$ and $99 x=36.3$	M1	oe method	
	$\frac{297}{990}+\frac{66}{990}$ or $\frac{363}{990}$	M1	oe fractions	
	$\frac{11}{30}$	A1ft	Correct simplification of their fraction and M1 scored	

| Q Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |

$\mathbf{2 1}$ Alternative method 3	M1	oe method	
	$\frac{3}{10}+\frac{6}{90}$	M1	oe fractions with common denominator
	$\frac{27}{90}+\frac{6}{90}$ or $\frac{33}{90}$	A1ft	Correct simplification of their fraction and M1 scored
	$\frac{11}{30}$		

$\mathbf{2 2}$	$54 \div 6(\times 5)$ or 9 or 45	M 1	oe
	45 in V only and 9 in P only	A 1	
	their $45+x=4$ (their $9+x)$ or their $45+x=$ their $36+4 x$	M1	oe any letter
	3 in V and P	A1ft	ft their 45 and their 9 Award if V total $=4 \times \mathrm{P}$ total
	B1ft	ft their 45 and their 9 and 3 Award if the four values total 75	

23	Alternative method 1		
	$600 \div 1.2 \text { or } 500$ or $528 \div 1.2 \text { or } 440$	M1	oe
	their 500 - their 440 or 60	M1	cost of helmet before VAT
	60×0.2 or 60×1.2 or 12 or 72	M1	
	$\frac{12}{600} \times 100$	M1	oe
	2(\%)	A1	

| Q Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |

23 cont	Alternative method 2		
	600-528 or 72	M1	
	$\begin{aligned} & 72 \div 1.2 \\ & \text { or } \\ & 60 \end{aligned}$	M1	
	their 72 - their 60 or 12	M1	
	$\frac{12}{600} \times 100$	M1	
	2(\%)	A1	

24(a)	$1-1=0$ and After 1 it's all 0s	B1	oe Do not accept a list of zeros
24(b)	$1-(-1)=2$ $4-2=2$ and After -1 it's all 2s	B1	oe
$1-\sqrt{2}-\sqrt{2}+2$ or $1-2 \sqrt{2}+2$ 24(c) $3-2 \sqrt{2}$	B1	oe Do not accept a list of twos	
	M1	Allow one error with four terms	

| Q Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |

Q	Answer	Mark	Comments

Alternative method 1

$y=2 x-5$	M1	
$x^{2}-2(2 x-5)=31$ or $x^{2}-4 x+10=31$	M1	Eliminating a variable oe
$x^{2}-4 x-21=0$	A1	Collecting terms
$(x+3)(x-7)(=0)$	M1	Correct and accurate method to solve their 3 -term quadratic equation $\frac{4 \pm \sqrt{(-4)^{2}-4 \times 1 \times(-21)}}{2 \times 1}$
$x=-3 \text { and } x=7$ or $x=-3 \text { and } y=-11$ or $x=7 \text { and } y=9$	A1	
$x=-3, y=-11$ and $x=7, y=9$	A1	

Alternative method 2

$4 x=2 y+10$	M1	Equating coefficients		
$x^{2}-(4 x-10)=31$	M1	Eliminating a variable oe		
$x^{2}-4 x-21=0$	A1	Collecting terms		
$(x+3)(x-7)(=0)$	M1	Correct and accurate method to solve their 3 -term quadratic equation $\frac{4 \pm \sqrt{(-4)^{2}-4 \times 1 \times(-21)}}{2 \times 1}$		
$x=-3$ and $x=7$ or $x=-3$ and $y=-11$ or $x=7$ and $y=9$	A1			
$x=-3, y=-11$ and $x=7, y=9$			\quad A1	
:---				

| Q Answer | Mark | Comments |
| :---: | :---: | :---: | :---: |

26 cont	Alternative method 3		
	$x=\frac{y+5}{2}$	M1	
	$\left(\frac{y+5}{2}\right)^{2}-2 y=31$	M1	Eliminating a variable oe
	$y^{2}+2 y-99=0$	A1	Collecting terms
	$(y+11)(y-9)(=0)$	M1	Correct and accurate method to solve their 3 -term quadratic equation $\frac{-2 \pm \sqrt{(2)^{2}-4 \times 1 \times(-99)}}{2 \times 1}$
	$y=-11 \text { and } y=9$ or $x=-3 \text { and } y=-11$ or $x=7 \text { and } y=9$	A1	
	$x=-3, y=-11$ and $x=7, y=9$	A1	

27	Angle $B C A=36^{\circ}, C B A$ is a right-angle $180-90-36=54$	M1	Angles may be on diagram
	$(x=) 54^{\circ}$	A1	
	Angle $C A D=180-36-95=49$	B1	Angles may be on diagram
	$90-49$ $(y=) 41^{\circ}$	B1ft	

Copyright information

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Copyright © 2022 AQA and its licensors. All rights reserved.

