GCSE MATHEMATICS

2023 PRACTICE PAPER SET 2 Higher Tier Paper 1

Mark Scheme

8300/1H

Version 1.1

Principal Examiners have prepared these mark schemes for specimen papers. These mark schemes have not, therefore, been through the normal process of standardising that would take place for live papers.

Further copies of this Mark Scheme are available from aqa.org.uk

Glossary for Mark Schemes

GCSE examinations are marked in such a way as to award positive achievement wherever possible. Thus, for GCSE Mathematics papers, marks are awarded under various categories.

If a student uses a method which is not explicitly covered by the mark scheme the same principles of marking should be applied. Credit should be given to any valid methods. Examiners should seek advice from their senior examiner if in any doubt.

М	Method marks are awarded for a correct method which could lead to a correct answer.
Α	Accuracy marks are awarded when following on from a correct method. It is not necessary to always see the method. This can be implied.
В	Marks awarded independent of method.
ft	Follow through marks. Marks awarded for correct working following a mistake in an earlier step.
SC	Special case. Marks awarded within the scheme for a common misinterpretation which has some mathematical worth.
Mdep	A method mark dependent on a previous method mark being awarded.
Bdep	A mark that can only be awarded if a previous independent mark has been awarded.
oe	Or equivalent. Accept answers that are equivalent.
	eg accept 0.5 as well as $\frac{1}{2}$
[a, b]	Accept values between <i>a</i> and <i>b</i> inclusive.
3.14	Allow answers which begin 3.14 eg 3.14, 3.142, 3.1416
Use of brackets	It is not necessary to see the bracketed work to award the marks.

Examiners should consistently apply the following principles

Diagrams

Diagrams that have working on them should be treated like normal responses. If a diagram has been written on but the correct response is within the answer space, the work within the answer space should be marked. Working on diagrams that contradicts work within the answer space is not to be considered as choice but as working, and is not, therefore, penalised.

Responses which appear to come from incorrect methods

Whenever there is doubt as to whether a student has used an incorrect method to obtain an answer, as a general principle, the benefit of doubt must be given to the student. In cases where there is no doubt that the answer has come from incorrect working then the student should be penalised.

Questions which ask students to show working

Instructions on marking will be given but usually marks are not awarded to students who show no working.

Questions which do not ask students to show working

As a general principle, a correct response is awarded full marks.

Misread or miscopy

Students often copy values from a question incorrectly. If the examiner thinks that the student has made a genuine misread, then only the accuracy marks (A or B marks), up to a maximum of 2 marks are penalised. The method marks can still be awarded.

Further work

Once the correct answer has been seen, further working may be ignored unless it goes on to contradict the correct answer.

Choice

When a choice of answers and/or methods is given, mark each attempt. If both methods are valid then M marks can be awarded but any incorrect answer or method would result in marks being lost.

Work not replaced

Erased or crossed out work that is still legible should be marked.

Work replaced

Erased or crossed out work that has been replaced is not awarded marks.

Premature approximation

Rounding off too early can lead to inaccuracy in the final answer. This should be penalised by 1 mark unless instructed otherwise.

Q	Answer	Mark	Comments
	x ² or 3x	M1	
1	$x^2 + 3x$	A1	
2	6.16×10^4	B1	
3	1 20	B1	
4	<i>n</i> + 1	B1	
5	A pair of intersecting arcs of equal radii from ends of line with two intersections	M1	oe
	Perpendicular line drawn through points of intersection	A1	1 mm tolerance
	Alternative method 1		
	radius = $12 \div 4$ or 3 or diameter = $12 \div 2$ or 6 or 12×6 or 72	M1	
6	$\pi \times \text{their } 3^2 \text{ or } 9\pi$	M1	
	$2 \times \pi \times \text{their } 3^2 \text{ or } 18\pi$	M1dep	
	72 – 18π		Ignore attempts at factorisation

A1

Do not ignore further work

Q	Answer	Mark	Comments	6
	Alternative method 2			
	radius = $12 \div 4$ or 3 or diameter = $12 \div 2$ or 6 or 6×6 or 36	M1		
	$\pi \times \text{their } 3^2 \text{ or } 9\pi$	M1		
	$36-9\pi$	M1dep		
6 CONT	2(36 – 9π)	A1	Ignore attempts at expansi Do not ignore further work	on
	Additional Guidance			
	$72-18\pi=54\pi$			M1M1M1A0
	$72 - 18\pi = 9(8 - 3\pi)$ (error in factorisation)			M1M1M1A1
	Accept 3.14 or better for π for method marks			

	12÷3 or 4	M1	
7	4 × 7 or 28	M1dep	
	40	A1	SC1 50

	180 – 125 or 55	M1		
8(a)	125 ÷ 50 or 2.5 or 2h 30 minutes	M1	oe	
	their 55 ÷ 60 or 11/12 h or 55 min	M1dep	Dependent on 1st M1 or subtracting 25 from their distance oe	
	3 hours and 25 minutes	A1	205 mins	
8(b)	(The journey will) take longer	B1	oe	
	Additional Guidance			
	More time	B1		
	(The journey will) be slower	B0		

Q	Answer	Mark	Comments	
9	$\frac{20}{32}$ or $\frac{15}{24}$	B1	oe 0.625 or 62.5%	
	A correct probability from each bag, with attempt at a comparable form, with at least one correct	M1	eg denominator same for both $\frac{60}{96}$ twice, $\frac{5}{8}$ twice oe or 0.625 twice or 62.5% twice	
	No ticked AND both probabilities correct and in the same format	A1	eg No both the same with the correct value giver	
	Additional Guidance			
	if same ratio (e.g. 5:3 or 3:5) seen for both and tick NO			B1M1A1

	$\sqrt{30} > 5$	B1	oe May be implied by numerator is negative
10	negative ÷ positive = negative and No	B1	

11	$\frac{10}{100} \times 200\ 000\ or\ 20\ 000$ or 1.1 × 200 000 or 220 000 or 1.1 ² × 200 000 or 1.21 × 200 000	M1	oe
	242 000	A1	SC1 240 000

Q	Answer	Mark	Comments	
	Alternative method 1			
	$6^2 + 8^2$ or 36 + 64 or 100	M1		
12	$\sqrt{8^2+6^2}$ or $\sqrt{100}$	M1dep	oe	
12	$\sqrt{100} = 10 = \text{diameter}$	A1	oe eg the diagonal of the rectar the diameter two intersecting diagonals o touch the outside of circle so whose diagonal is of length cut from the circle	ngle is equal to f length 10 cm o all rectangles 10 cm can be
13	4	B1		
	$5x^2 - 15x + 2x - 6$ or $5x^2 - 13x - 6$	M1	M1 4 terms with at least 3 correct or 3 terms with at least 2 correct	
	$5x^{2} + (a - \text{their 13})x - \text{their 6} + b$ or $a - \text{their 13} = -16$ or $b - \text{their 6} = 7$	M1		
14	<i>a</i> = -3	A1		
	<i>b</i> = 13	A1		
	Additional Guidance			
	a - their 13 = -16, a = -3			M1A1
	a - their 13 = -16, a = -3 and b - 6 = -3	= 7 , <i>b</i> = 1 3		M1A1M1A1
	-3x + 13			M1A1M1A1

Q	Answer	Mark	Comments
15	$1\frac{5}{6} \div 4\frac{1}{8}$ or $\frac{11}{6}$ and $\frac{33}{8}$	M1	oe eg $\frac{44}{24}$ and $\frac{99}{24}$
	$\frac{11}{6} \div \frac{33}{8}$ or $\frac{11}{6} \times \frac{8}{33}$ or $\frac{8}{18}$	M1	oe unsimplified correct fraction
	$\frac{4}{9}$	A1	
	3	B1	
16	$\frac{1}{2^2}$ or $\frac{1}{4}$ or 0.25	M1	$\frac{3}{4}$ scores B1M1
	0.75	A1	
17(a)	Probability of red(and/or blue) is not $\frac{1}{3}$ or Probability of red is $\frac{1}{4}$	B1	oe
	He should multiply the answer by 2	B1	Any statement implying there are two ways the outcome is satisfied
	$\sqrt{\frac{25}{81}} \text{ or } \frac{\sqrt{25}}{\sqrt{81}} \text{ or } \frac{5}{9}$	M1	
17(b)	$360 \times \text{their} \frac{5}{9}$	M1dep	oe
	200	A1	

Q	Answer	Mark	Comments
18	$\frac{16x+12}{12} \text{ or } \frac{6x-15}{12}$ or $16x + 12$ and $6x - 15$	M1	oe Eg with brackets in the numerator
	$\frac{16x+12}{12} + \frac{6x-15}{12} = \frac{22x-3}{12}$	A1	
19	10	B1	
20	$\frac{1}{2}$	B1	oe

	Alternative method 1			
	10x = 3.666 and 9x = 3.3	M1	oe method $100x = 36.66$ and $99x = 36.3$	
	$\frac{33}{90}$	M1	oe fraction $\frac{363}{990}$	
	$\frac{11}{30}$	A1ft	Correct simplification of their fraction and M1 scored	
24	Alternative method 2			
21	$0.3 + 0.066 = \frac{3}{10} + 0.066$		oe method	
	and 100x = 6.66 and 99x = 36.3	M1		
	$\frac{297}{990} + \frac{66}{990}$ or $\frac{363}{990}$	M1	oe fractions	
	$\frac{11}{30}$	A1ft	Correct simplification of their fraction and M1 scored	

Q	Answer	Mark	Comments	
	Alternative method 3			
21 cont	$\frac{3}{10} + \frac{6}{90}$	M1	oe method	
	$\frac{27}{90} + \frac{6}{90}$ or $\frac{33}{90}$	M1	oe fractions with common denominator	
	<u>11</u> 30	A1ft	Correct simplification of their fraction and M1 scored	
22	54 ÷ 6 (× 5) or 9 or 45	M1	oe	
	45 in V only and 9 in P only	A1		
	their $45 + x = 4$ (their $9 + x$) or their $45 + x =$ their $36 + 4x$	M1	oe any letter	
	3 in V and P	A1ft	ft their 45 and their 9 Award if V total = $4 \times P$ total	
	18 not in V or P	B1ft	ft their 45 and their 9 and 3 Award if the four values total 75	

	Alternative method 1		
	600 ÷ 1.2 or 500 or	M1	Oe
	528 ÷ 1.2 or 440		cost of holmot hoforo VAT
	or	M1	
23	60		
	60 × 0.2		
	or	M1	
	60 × 1.2 or 12 or 72		
	12/600 ×100	M1	oe
	2(%)	A1	

Q	Answer	Mark	Comments	
	Alternative method 2			
	600 – 528 or 72	M1		
	72 ÷1.2			
	or	M1		
	60			
23 cont	their 72 – their 60			
	or	M1		
	12			
	12/600 ×100	M1		
	2(%)	A1		

24(a)	1 - 1 = 0 and After 1 it's all 0s	B1	oe Do not accept a list of zeros
	1 – (–1) = 2	B1	oe
24(b)	4 - 2 = 2 and After -1 it's all 2s	B1	oe Do not accept a list of twos
24(c)	$1 - \sqrt{2} - \sqrt{2} + 2$ or $1 - 2\sqrt{2} + 2$ or $3 - 2\sqrt{2}$ $2 - \sqrt{2}$	M1 A1	Allow one error with four terms

Q	Answer	Mark	Comments	
	Alternative method 1			
	$\left(\frac{10}{\sqrt{2}}\right) = \frac{10\sqrt{2}}{2\sqrt{2}}$ or $\frac{10\sqrt{2}}{2}$ or $5\sqrt{2}$ $\left(\sqrt{18}\right) = 3\sqrt{2}$	M1 M1		
25	$8\sqrt{2}$ or a = 8, b = 2	A1		
	Alternative method 2			
	$\frac{10+\sqrt{36}}{\sqrt{2}} \left(=\frac{16}{\sqrt{2}}\right)$	M1		
	$\frac{16}{\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}}$ or $\frac{16\sqrt{2}}{2}$	M1		
	$8\sqrt{2}$ or a = 8, b = 2	A1		

Q	Answer	Mark	Comments		
	Alternative method 1				
	y = 2x - 5	M1			
	$x^{2} - 2(2 x - 5) = 31$ or $x^{2} - 4x + 10 = 31$	M1	Eliminating a variable oe		
	$x^2 - 4x - 21 = 0$	A1	Collecting terms		
	(x + 3)(x - 7) (= 0)	M1	Correct and accurate method to solve their 3-term quadratic equation $\frac{4\pm\sqrt{(-4)^2-4\times1\times(-21)}}{2\times1}$		
	x = -3 and x = 7 or x = -3 and y = -11 or x = 7 and y = 9	A1			
26	x = -3, y = -11 and $x = 7, y = 9$	A1			
	Alternative method 2				
	4x = 2y + 10	M1	Equating coefficients		
	$x^2 - (4x - 10) = 31$	M1	Eliminating a variable oe		
	$x^2 - 4x - 21 = 0$	A1	Collecting terms		
	(x+3)(x-7) (= 0)	M1	Correct and accurate method to solve their 3-term quadratic equation $\frac{4\pm\sqrt{(-4)^2-4\times1\times(-21)}}{2\times1}$		
	x = -3 and $x = 7orx = -3$ and $y = -11orx = 7$ and $y = 9$	A1			
	x = -3, $y = -11$ and $x = 7$, $y = 9$	A1			

Q	Answer	Mark	Comments
	Alternative method 3	I	
	$x = \frac{y+5}{2}$	M1	
	$\left(y+5 \right)^2$ 0.04	NA	Eliminating a variable
26 cont	$\left(\frac{1}{2}\right)^{-2y=31}$	M1	oe
	$y^2 + 2y - 99 = 0$	A1	Collecting terms
	(y + 11)(y - 9) (= 0)	N/1	Correct and accurate method to solve their 3-term quadratic equation
			$\frac{-2\pm\sqrt{\left(2\right)^2-4\times1\times\left(-99\right)}}{2\times1}$
	y = -11 and $y = 9$		
	or		
	x = -3 and $y = -11$	A1	
	or		
	x = 7 and $y = 9$		
	x = -3, y = -11 and $x = 7, y = 9$	A1	

27	Angle $BCA = 36^{\circ}$, CBA is a right-angle 180 - 90 - 36 = 54	M1	Angles may be on diagram
	(<i>x</i> =) 54°	A1	
	Angle <i>CAD</i> = 180 – 36 – 95 = 49	B1	Angles may be on diagram
	90 – 49 (y =) 41°	B1ft	

Copyright information

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Copyright $\textcircled{\mbox{\scriptsize o}}$ 2022 AQA and its licensors. All rights reserved.