

Year 11 Foundation PPE Contents Page

Торіс	Page
Year 11 Foundation Tier PPE Cycle (2) Assessment Revision List	3
Statistical Measures	4 - 6
Collecting and representing data	7 - 10
Probability (1)	11 - 14
Probability (2)	15 - 19
Probability (3)	20 - 22
Ratio and proportion	23 - 25
Perimeter and Area (1)	26 - 30
Perimeter and Area (2)	31 - 34
Volume	35 - 38
Measures	39 - 42
Trigonometry	43 – 48
Basic algebra (1)	49 - 51
Basic algebra (2)	52 - 54
Basic algebra (3)	55 – 57
Basic algebra (4)	58 – 62
Basic algebra (5)	63 – 67
Equations	68 – 71
Coordinates and linear graphs	72 – 76
Algebra: Quadratics, Rearranging Formulae and Identities	77 – 78
Solving quadratic equations	79 – 80
Indices	81 – 85
Standard form	86 - 89

Year 11 Foundation PPE (2) Assessment Revision List

Choose the areas you need to practice and look at these on Sparx Independent Learning.

Remember your Curriculum must be set to GCSE.

Speak to your teacher if you have any questions.

Paper 1
Types of angles
Calculation
Negative number subtraction
Fraction to decimal
Decimal addition and subtraction & decimal multiplication
Coordinate problem
Money puzzle
Mode from line graph & probability
Factors & LCM
Proportion and rounding & multiplication
Parallelogram, trapeziums and rhombus
Percentage of an amount
Fraction bigger than 1
Volume of a cuboid
Solids
Bearings & direction and scale drawing
Simplify ratio, Ration in the form 1 : n and
sharing an amount in a given ratio
Describe a population
Expressions & algebra reasoning
Standard form
Tree diagrams & probability with 2 events
Reverse percentages
Laws of indices
Inverses
Area and proportion
Inverse proportion graph
Rearrange a formula
Expand brackets

Paper 3
Place value
Equation
Mixed number to fraction
Algebraic expression
Ordering numbers
Proportion problem & assumption
Pictograms
Multiples
Best buy
Angle problem
Function machine
Triangular numbers
Prime numbers
Metric imperial conversion
Inequality notation
Rotational symmetry
Systematic listing & pie chart
Enlargement fractional scale factor
Simplification & factorisation
Positive and negative roots
Limits
Substitution & algebraic argument
Compound measures and time problem
Density
Set up & solve an equation
Compound interest
Mean and ratio
Equation of a line
Triangle properties
Trigonometry

Statistical Measures – Foundation

Knov	wledge			Calcula	ating the	range				U526	
	6	Sparx		Calcula	ating the	median				U456	
sparx	ľ.	Codes		Finding	the mod	de				U260	
				Calcula	ating the	mean				U291	
	Below i	is a list of	numt	oers.							
	7	6	4	3	7	7	3	4	0	9	
(a)	What is	the mod	e?								[1 mar
	Circle y	our answ	ver.								Li mai
			5		7		6		9		
(b)	What is	the mea	n?								[2 mark
	Circle y	our answ	ver.								
			5		7		6		9		
(c)	What is	the rang	e?								[1 mai
	Circle y	our answ	er.								נו וומ
			5		7		6		9		
(d)	What is	the med	ian?								[2 mark
rcle yc	our answe	r.									
			5		7		6		9		

2		Here is a list of numbers	
2			
		7 4 2 2	5
2	(a)	Find the mean of the numbers.	10
			[2 marks]
		Answe	r
2	(b)	15 is added to each of the numb	oors in the list
2	(6)	What will the mean be now?	[2 marks]
		Answe	r

3 (a)	Ten dogs attend a training class with their owners and are scored out of 10.
	5 of the dogs are Alsatians and the other 5 are Labradors.
	The Alsatians had a range of 8 and a mean of 4.4
	Here are the results for the Labradors.

7 5 8 9 4

Use the data to investigate the hypothesis.

'Labradors score better in training than Alsatians.'

[5 marks]

3 (b) Give two ways you could improve the investigation to make the conclusion more reliable?

[2 marks]

First way

Second way

Collecting and representing data – Foundation

		Drawing and interpreting tally charts	U653
		Drawing and interpreting pictograms	U506
Knowledge		Drawing bar charts	U363
	Sparx	Interpreting bar charts	U557
sparx 🙎	Codes	Drawing pie charts	U508
		Interpreting pie charts	U172
		Drawing line graphs	U590
		Interpreting line graphs	U193

1 Here is some information about clubs at a school.

School club	Number of members
Football	40
Debating	15
Chess	20
Maths	25

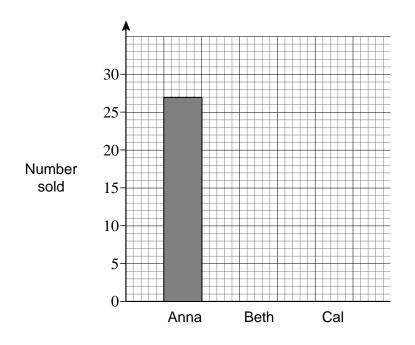
Use the information to complete the pictogram.

The first two rows have been done for you.

Remember to complete the key.

represents members Key Football Debating Chess Math

2 Anna, Beth and Cal bake and sell cakes. [3 marks]



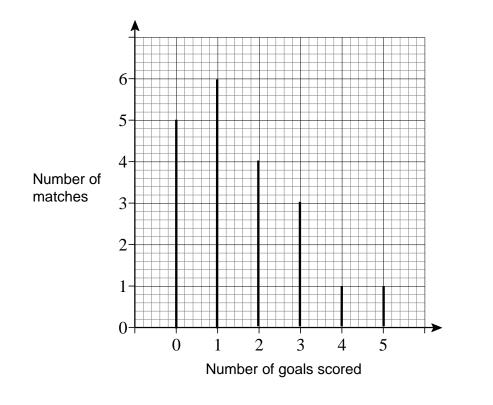
Beth and Cal sell 50 cakes **in total**. Beth sells 6 **more** than Cal.

2 (a) Draw the bars for Beth and Cal on the bar chart.

[2 marks]

2 (b) It costs Anna £1.50 to bake a cake. She sells them for £5 each.

How much profit does Anna make selling all her cakes?


[3 marks]

Answer £

3 The diagram shows the number of goals scored by a team in 20 matches.

3 (a) How many times did the team only score 2 goals in a match?

	Answer	
3 (b)	At the end of the season the team had played 24 matches. They scored 40 goals in total.	
	How many goals did they score in the last 4 matches?	[2 marks]
	Answer	

[1 mark]

- College В College C College A College D 4 (a) What percentage of the total attend College C? [1 mark] Answer % 4 (b) Compare the number of students at College A with the number at the other colleges. [1 mark] 4 (c) 1200 students attend College D. How many students attend all the colleges? [3 marks]
- 4 The pie chart shows information about the number of students attending four colleges.

Probability (1) – Foundation (Non-calculator)

		Using probability phrases	U803
		Writing probabilities as fractions	U408
Knowledge		Writing probabilities as fractions, decimals and percentages	U510
	Sparx	Probabilities of mutually exclusive events	U683
sparx 🙎	Codes	Expected results from repeated experiments	U166
		Sample space diagrams	U104
		Frequency trees	U280
		Tree diagrams for independent events	U558

- 1 In a raffle there is one winning ticket. In total 360 tickets are sold.
- **1 (a)** Rachel buys 12 tickets.

What is the probability she buys the winning ticket? Give your answer as a fraction in its simplest form.

[2 marks]

Answer _____

1 (b) How many tickets should Zain buy to have a $\frac{1}{90}$ chance of winning?

[2 marks]

Answer

2	In a game, a player spins this w The wheel is fair.	heel.	3 4 2 5 1 6 8 7	
	What is the probability that the	player scores	·	
2 (a)	an even number greater than 2'	?		[1 mark]
	An	swer		
2 (b)	a prime number?			[1 mark]
	An	swer		
2 (c)	a square number?			[1 mark]
	An	swer		
2 (d)	a number that is a factor of 24?			[1 mark]
	An	swer		

3 There are 40 counters in a bag.

Three-eighths of the counters are yellow. One-fifth of the counters are red. The rest of the counters are blue.

One counter is chosen at random. Work out the probability that the counter is blue.

[4 marks]

Answer _____

[2 marks]

A class of 30 students are asked about their favourite hobby.The results are shown in the table. Some of the values are missing.

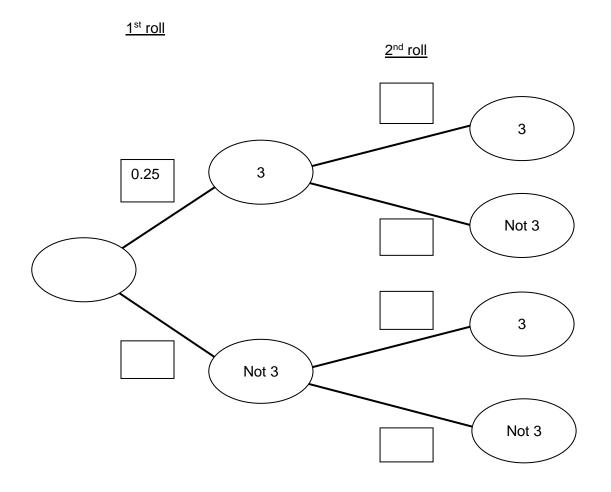
Hobby	Воу	Girl	Totals
Playing football		2	10
Reading	2	1	3
Watching TV	5		9
Playing computer games	3	5	8
Totals	18	12	30

A student is chosen at random.

Work out the probability that the student is:

4 (a) a boy whose favourite hobby is playing football

4 (b)	a girl whose favourite hobby is not reading [2 ma	arks]
	Answer	
	The teacher chooses a student at random from the class and it is a boy,	
l (b)	Work out the probability that his favourite hobby is either watching TV or playing compu- games.	ter
	Give your answer as a fraction in its simplest form. [3 ma	arks]



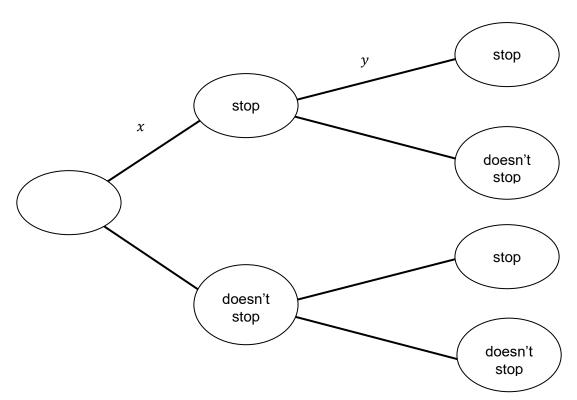
Probability (2) – Foundation (Non-calculator)

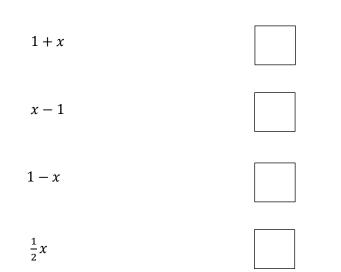
		Using probability phrases	U803
		Writing probabilities as fractions	U408
Knowledge		Writing probabilities as fractions, decimals and percentages	U510
	Sparx	Probabilities of mutually exclusive events	U683
sparx 🙎	Codes	Expected results from repeated experiments	U166
		Sample space diagrams	U104
		Frequency trees	U280
		Tree diagrams for independent events	U558

- 1 The probability that a biased dice lands on a 3 is 0.25 The dice is rolled twice.
- **1 (a)** Complete the tree diagram.

[2 marks]

1 (b)	Work out the probability that both rolls are not a 3.	[2 marks]
	Answer	
1 (c)	Work out the probability of scoring exactly one 3	[2 marks]
	Answer	


2		A bag contains 20 balls.	
		The ratio of red to blue balls is 3 : 7	
		A ball is picked at random and replaced.	
		The bag is shaken and then a second ball is picked at random.	
2	(a)	Work out the probability that two red balls are picked.	[0]
			[3 marks]
		Answer	
2	(b)	Work out the probability that the balls picked are different colours.	
			[2 marks]
		Answer	
2	(c)	How would the probability of red for the second ball change if the first ball was no replaced?	t
			[1 mark]


3 A car passes through two sets of traffic lights each day.

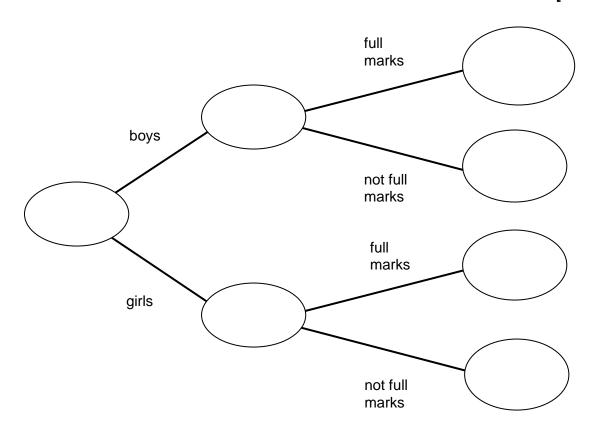
The driver records whether he has to stop at the lights over a long period of time and produces the following tree diagram.

3 (a) Tick the expression for the probability that the driver does not stop at the first set of lights.

[1 mark]

3 (b)	Work out an expression for the probability that the driver does not stop at the first set of lights but stops on the second set?
	[1 mark]
	Answer
3 (c)	Work out an expression for the probability that the driver stops on at least one set of lights?
	Simplify your answer. [3 marks]
	Answer

Probability (3) – Foundation (Calculator)

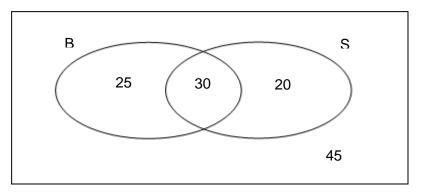

Knowledge		Using standard form with positive indices	U330
	0	Using standard form with negative indices	U534
sparx	Sparx Codes	Multiplying and dividing numbers in standard form	U264
spar x	00000	Adding and subtracting numbers in standard form	U290
		Standard form with a calculator	U161

1 90 students take a test.

The ratio of boys to girls is 3 : 2. One third of the boys score full marks. The number of girls scoring full marks is half the number who do **not** score full marks.

1 (a) Complete the frequency tree.

[3 marks]



1 (b) A student is chosen at random.What is the probability it is a girl who did **not** get full marks? Give your answer as a fraction in its simplest form.

[2 marks]

Answer

A farmer collects some eggs from his hens one morning.
 The eggs are either brown (B) or white and are sorted into small (S) and large sizes.
 The Venn diagram shows the results.

Two eggs are chosen at random.

2 (a) Work out the probability that the first egg is large and white.

[2 marks]

Answer ______2 (b) The first egg was small. Work out the probability that the second egg is small. [1 mark]

- **3** A large park has thousands of flowers. The flowers are pink, yellow or blue. 55% of the flowers are pink and the ratio of yellow to blue flowers is 2 : 1
- **3** (a) Complete the table to show the relative frequency of each colour of flower in the park.

[3 marks]

Flower colour	Yellow	Pink	Blue
Relative frequency			

3 (b) Bees visit the flowers to get pollen to make honey.

The probability that flowers are visited by a bee are shown.

Flower colour	Yellow	Pink	Blue
Probability of being visited by a bee	0.6	0.3	0.75

Produce a tree diagram in the space below to show all the information from (a) and (b)

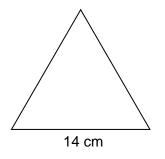
[5 marks]

Ratio and proportion – Foundation

			Writing and simplifying	ratios	U687
			Using equivalent ratios	to find unknown amounts	U753
Kn	Knowledge Conv Sparx Shar Codes		Converting between rate	tios, fractions and percentages	U176
			Sharing amounts in a g	iven ratio	U577
spa			Combining ratios		U921
			Calculating with ratios	and algebra	U676
			Changing ratios		U865
	The workers in	a comp	any are in the ratio	female : male = $1:4.5$	
a)	What fraction of	f the wo	orkers are female?		[2 marks
b)		as 150	female workers.		
	How many work	kers are	e there altogether?		[2 marks
	How many work $a:b = 2:7$ $a^2 = 36$	kers are	Answer		[2 marks

		Answer	and		
	A box contains 192 per	ns,			
	They are red, green or	blue.			
	A quarter of the	pens are red.			
	The ratio gree	n pens : blue pens	= 1:8		
	How many blue pens a	re there?			
					[4 mark
		Answer			
	$r \cdot r = 5 \cdot 1$				
	x: y = 5: 1				
)	Circle the equation of y	y as a function of x .			[1 mor
					[1 mar
	$y = \frac{x}{6}$	$y = \frac{x}{5}$	y = 5x	y = 6x	
	y – 6	y – 5	y = 5x	y = 0x	
、	Chow that				
)	Show that $x + y : x$	-y = 3.2			[2 mark
					L=

	ve a mass of 125 g 630 calories per 100 g	
Work out the nu	mber of calories per hazelnut.	[3 mark
	Answer	calori
Jake and Kim sl Kim gets £90 m	nare some money in the ratio 1 : 3 ore than Jake.	
How much does		[3 mark
	Answer £	



Perimeter and Area (1) – Foundation

		Finding the area and perimeter of simple shapes	U993
		Finding the perimeter of compound shapes	U351
Knowledge		Finding the area of compound shapes	U970
do	Sparx Codes	Finding the area of triangles	U945
sparx	Codes	Finding the area of compound shapes containing triangles	U575
		Finding the area of parallelograms	U424
		Area and perimeter of rectangles and compound shapes	U226

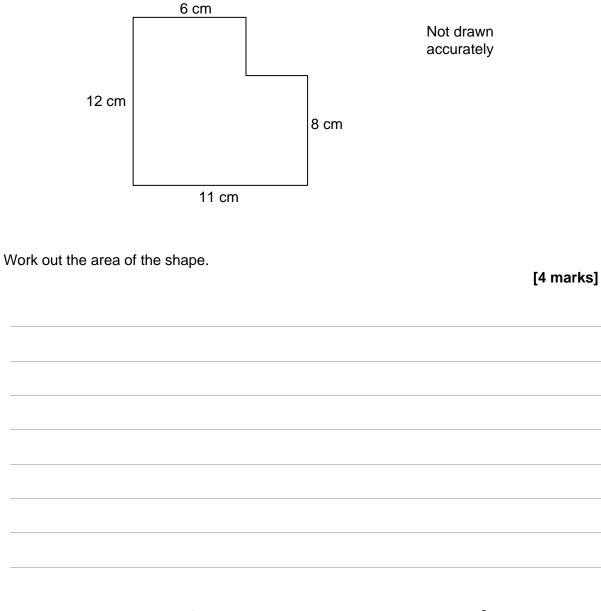
The diagram shows an equilateral triangle and a square.Each side of the triangle is 14 cm

Not drawn accurately

The perimeter of the triangle is equal to the perimeter of the square.

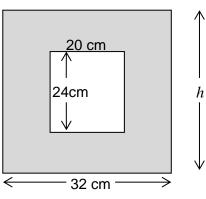
Work out the length of a side of the square.

[3 marks]


Answer

cm

2 This shape is made from rectangles.


Answer _____ cm²

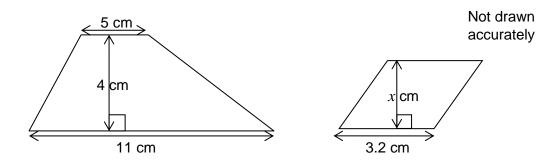
[3 marks]

3 The diagram shows a rectangular mirror inside a rectangular frame.

Not drawn accurately

The frame is the same width all the way around.

3 (a) Work out *h*, the overall height of the frame.


		Answer	cm
3 (b)	Work out the shaded area.		[3 marks]
		Answer	cm ²

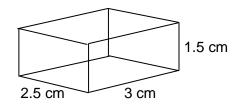
King Edward VI Community College Mathematics Department

4

The area of the trapezium is four times the area of the parallelogram.

Work out the value of *x*.

[3 marks]


Answer

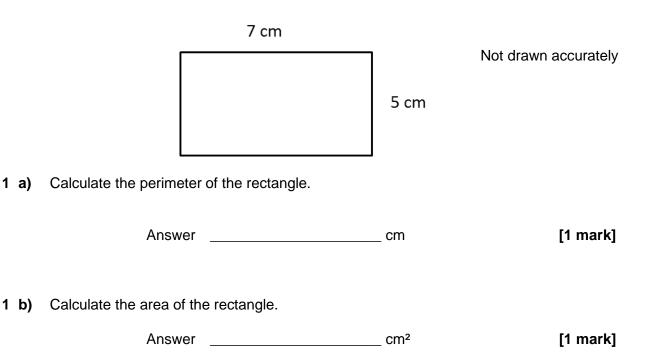
5 (a)	Circle the number of vertices of a triangular prism.				[1 mark]
	4	5	6	9	
5 (b)	Circle the number of edges of a square based pyramid				[1 mark]
	4	5	8	10	

6 A framework in the form of a cuboid is made from wire.

Work out the total length of wire used.

[2 marks]

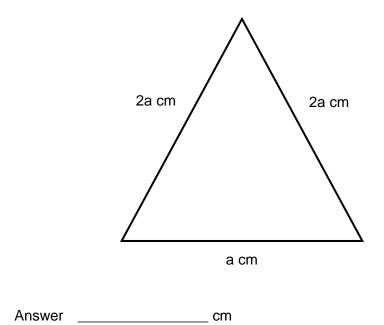
Answer _____ cm

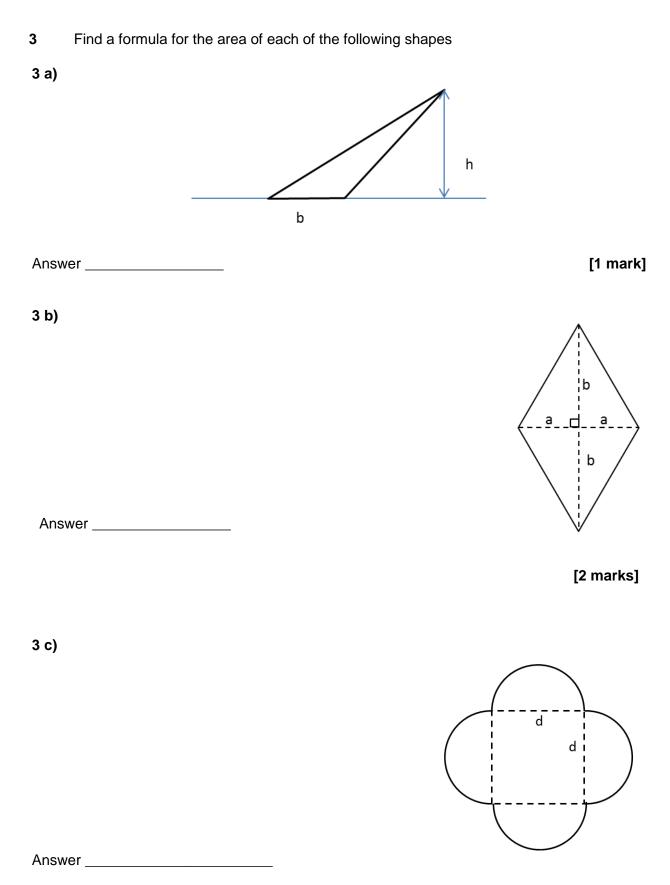


Perimeter and Area (2) – Foundation

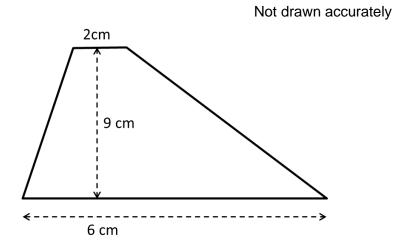
		Finding the area and perimeter of simple shapes	U993
Kasudadas		Finding the perimeter of compound shapes	U351
Knowledge	_	Finding the area of compound shapes	U970
	x 2 Sparx Codes	Finding the area of triangles	U945
sparx		Finding the area of compound shapes containing triangles	U575
		Finding the area of parallelograms	U424
		Area and perimeter of rectangles and compound shapes	U226

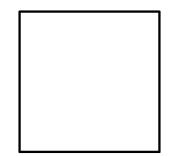
1 This rectangle is 7 cm long and 5 cm wide.




2 Work out the perimeter of this triangle. Simplify your answer.

[1 mark]



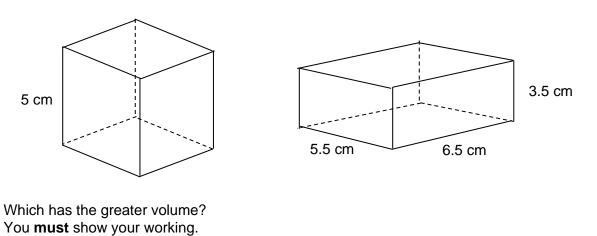

[3 marks]

4) The trapezium and the square have the same areas.

What is the perimeter of the square?

Answer_____

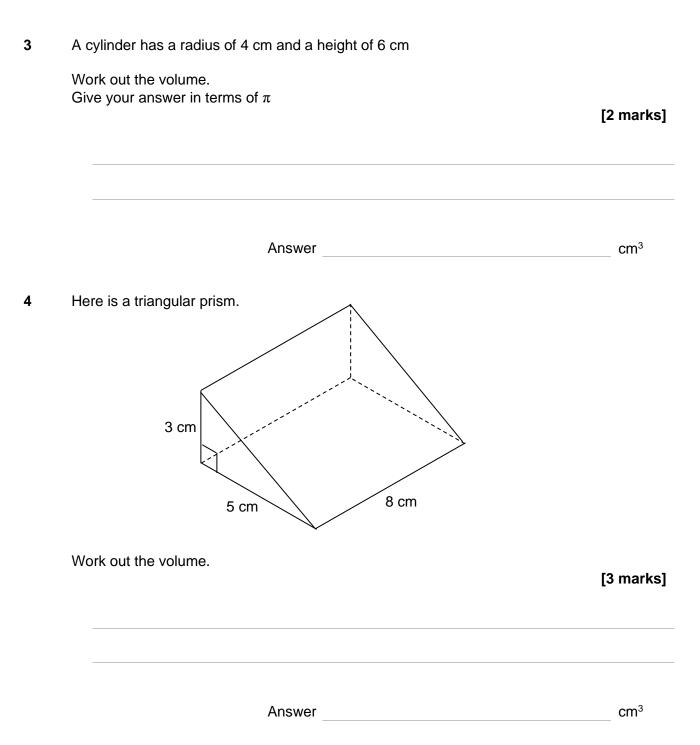
[4 marks]



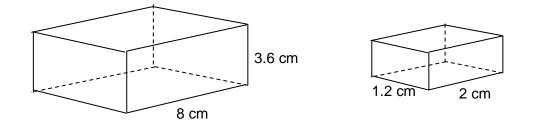
Volume – Foundation

		Finding the volume of	f cubes and cuboids	U786	
Knowledge		Finding the volume of	f prisms	U174	
	Sparx	Finding the volume of	f pyramids	U484	
sparx 🙎	rx 😤 Codes	Finding the volume of	f cylinders	U915	
		Finding the volume of	fcones	U116	
		Finding the volume of	fspheres	U617	
1 Which of the following is no t a measure of volume? Circle your answer. [1 mark]					
lit	re	cubic centimetre	metre	mm ³	

2 Here are a cube and a cuboid.



[3 marks]



5 These two cuboids are similar in shape.

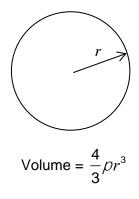
5 (a) How many small cuboids will fill the large cuboid?

[2 marks]

	Answer	
5 (b)	Which information, given on the diagrams, is not necessary to answer part (a). Give a reason to support your answer,	[2 mark]

6 Here is a cuboid.

The areas of the top and two sides are shown.


Answer

Work out the volume of the cuboid.

[3 marks]

cm³

7 Here is a sphere.

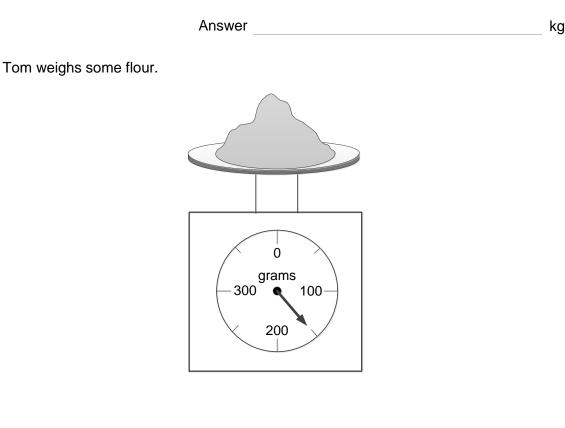
The volume of the sphere is $36\pi\ cm^3$

Work out the value of r.

[2 marks]

Measures – Foundation

			F	stimating and measurir	nd		U102
	Know	vledge		converting units of lengt	-	icity	U388
	Sparx		-	converting units of area		long	U248
s	parx			converting units of volum	ne		U468
	parx		_	roblem solving: Conver		h area and volume	U663
				Ising appropriate units			U497
<u> </u>							
1		Circle the m	nost sensib	ble measurement for t	he quantity show	wn.	
1	(a)	The length	of a humar	finger			
•	(a)	The length		ringer.			[1 mark]
			7.000	7 0 am	170 om	1700 am	
			7 cm	70 cm	170 cm	1700 cm	
1	(b)	The area of	a garden.				
			·				[1 mark]
			50 cm ²	100 cm ²	50 m ²	50 km ²	
	(-)	The survey	4	, kattle and hald			
1	(c)	The amoun	t of water a	a kettle can hold.			[1 mark]
			- ·				
			2 ml	20 ml	200 ml	2000 ml	
1		Adam's wei	aht to the r	nearest kilogram is 65	5 ka		
•			9.11.10 110 1				
2	(a)	What is the	greatest p	ossible value of his w	veight?		
							[1 mark]
				Answer			kg



3

2 (a) What is the least possible value of his weight?

3 (a) How much does the flour weigh?

[1 mark]

[2 marks]

Answer _____ g

3 (b) 1.2 kg of flour are needed for a recipe.Explain how to use the scales to weigh 1.2 kg of flour.

King Edward VI Community College Mathematics Department

4	Convert 24 000 cm ³ into m ³	[2 marks]
	Answer	

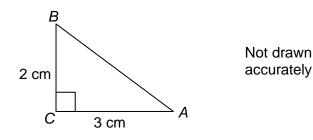
5 The speed of a car is shown in kilometres per hour.

Work out the speed of the car in miles per hour.

[3 marks]

Answer _____ miles per hour

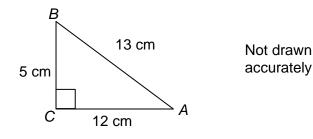
6	Sam leaves home at 9:00 am He works out his journey to work takes 8100 seconds.	
	At what time did he arrive at work?	[3 marks]
	Answer	
7	Tom's car travels 40 miles per gallon.	
	One litre of petrol costs £1.19	
	1 gallon = 4.5 litres	
	Work out the cost of petrol when Tom drives 200 miles.	[4 marks]
	Answer £	



Trigonometry – Foundation

		Understanding sin, cos and tan	U605
Knowledge		Finding unknown sides in right-angled triangles	U283
	Sparx	Finding unknown angles in right-angled triangles	U545
sparx 🙎	Sparx Codes	Using the exact values of trigonometric ratios	U627
		Angles of elevation and depression	U967
		Calculating with trigonometry and bearings	U164

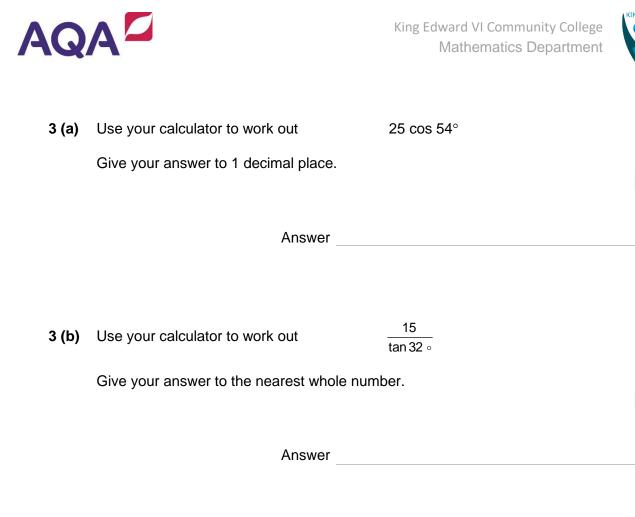
1 What is the value of tan A for this triangle?



Circle your answer.

[1 mark]

2	2	2	3
3	5	$\overline{\sqrt{13}}$	$\sqrt{13}$


2 What is the value of sin *A* for this triangle?

Circle your answer.

5	5	12	13
12	13	13	5

[1 mark]

3(c) Use your calculator to work out Give your answer to 1 decimal place

Answer degrees

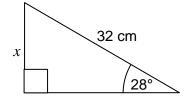
 $\tan^{-1}\left(\frac{18}{35}\right)$

[1 mark]

[1 mark]

[1 mark]

King Edward VI Community College Mathematics Department

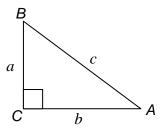


4	Triangles ABC and PQR are similar. $ \begin{array}{c} P \\ 1 \text{ cm} \\ B \\ \end{array} \begin{array}{c} P \\ 2 \text{ cm} \\ 30^{\circ} \\ C \\ \end{array} \begin{array}{c} P \\ 10 \text{ cm} \\ Q \\ \end{array} $	Not drawn accurately
4 (a)	Write down the size of angle BAC.	[1 mark]
	Answer	degrees
4 (b)	Write down the size of angle <i>PRQ</i> .	[1 mark]
	Answer	degrees
4 (c)	Use Pythagoras' theorem to work out the length <i>BC</i> . Give your answer as an exact value.	[2 marks]
	Answer	cm
4 (d)	Work out the length of <i>QR</i> . Give your answer as an exact value.	[1 mark]
	Answer	cm

5

Not drawn accurately

Which of the following gives the length x in centimetres? Circle your answer.


[1 mark]

32 imessin 28°

 $28\times sin\,32^\circ \qquad \qquad 32\times cos\,28^\circ$

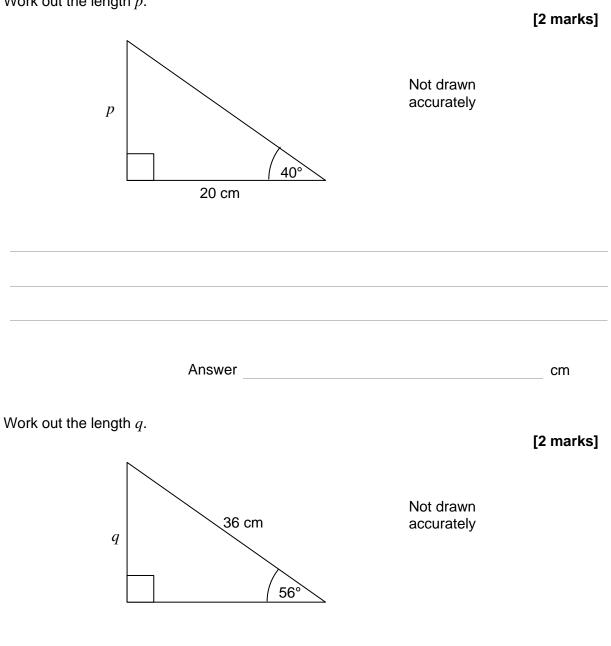
 $28 imes \cos 32^\circ$

6 For this triangle, which of the following is **not** true?

Circle your answer.

[1 mark]

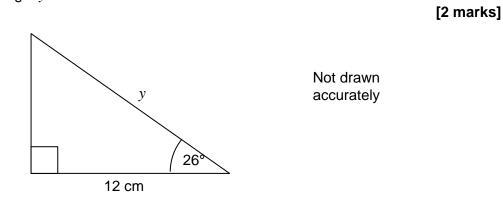
$$\tan A = \frac{b}{a}$$
 $\sin B = \frac{b}{c}$ $\sin A = \frac{a}{c}$ $\cos A = \frac{b}{c}$



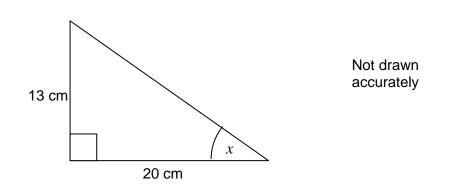
8

King Edward VI Community College Mathematics Department

7 Work out the length *p*.


Answer _____

cm



9 Work out the length *y*.

Answer	cm

10 Work out the size of angle *x*.

[2 marks]

Basic algebra (1) – Foundation

Answer Insert brackets to make the calculation correct $100 - 4 + 3^2 = 51$ [1 Answer Put these in order of size, starting with the smallest. You must show your working.			
Knowledge sparx parx parx bSparx codesExpanding single bracketsU179 Expanding double bracketsU179 Expanding double bracketsSparx codesSparx codesExpanding double bracketsU768 Solving equations with one stepU755 Solving equations with one stepU755 Solving equations with the unknown on both sidesU870 		Simplifying expressions by collecting like terms	U105
Knowledge Sparx Expanding double brackets U768 sparx Sparx Factorising into one bracket U365 Solving equations with one step U755 Solving equations with two or more steps U325 Solving equations with two or more steps U325 Solving equations with the unknown on both sides U870 Changing the subjects of formulae U556 U56 If Answer [1 Answer		Simplifying expressions using index laws	U662
sparx Sparx Codes Charle brackets 0.768 Factorising into one bracket U365 Solving equations with one step U755 Solving equations with one step U325 Solving equations with two or more steps U325 Solving equations with two or more steps U325 Solving equations with two or more steps U325 Work out the value of $35 - 3 \times 9$ [1 Answer		Expanding single brackets	U179
sparx 2 Codes Factorising into one bracket U365 Solving equations with one step U755 Solving equations with one step U325 Solving equations with two or more steps U325 Solving equations with the unknown on both sides U870 Changing the subjects of formulae U556 U56 U67 U56 Work out the value of $35 - 3 \times 9$ [1 Answer	-	Expanding double brackets	U768
Solving equations with one step U755 Solving equations with two or more steps U325 Solving equations with the unknown on both sides U870 Changing the subjects of formulae U556 Work out the value of $35 - 3 \times 9$ Insert brackets to make the calculation correct $100 - 4 + 3^2 = 51$ Insert brackets to make the calculation correct $100 - 4 + 3^2 = 51$ Put these in order of size, starting with the smallest. You must show your working.		Factorising into one bracket	U365
Solving equations with the unknown on both sides U870 Changing the subjects of formulae U556 Work out the value of $35 - 3 \times 9$ Answer [1] Answer [1] Insert brackets to make the calculation correct $100 - 4 + 3^2 = 51$ Insert brackets to make the calculation correct $100 - 4 + 3^2 = 51$ Put these in order of size, starting with the smallest. You must show your working.		Solving equations with one step	U755
Changing the subjects of formulae U556 Work out the value of $35 - 3 \times 9$ [1] Answer		Solving equations with two or more steps	U325
Work out the value of $35 - 3 \times 9$ [1 Answer		Solving equations with the unknown on both sides	U870
[1 Answer Insert brackets to make the calculation correct $100 - 4 + 3^2 = 51$ [1 Answer Put these in order of size, starting with the smallest. You must show your working. [3 r		Changing the subjects of formulae	U556
Insert brackets to make the calculation correct $100 - 4 + 3^2 = 51$ [1 Answer Put these in order of size, starting with the smallest. You must show your working. [3 r	Work out the value of	35 – 3 × 9	[1 ma
[1 Answer Put these in order of size, starting with the smallest. You must show your working. [3 r		Answer	
You must show your working. [3 r		Answer	L
You must show your working. [3 r			
[3 r	Put these in order of size	e, starting with the smallest.	
	You must show your wo	rking.	[3 mar
$3 + 6^2 - 10$ $20 - (2 + 3)^2$ $15 - 54 \div 3^3$	0	$x^2 = 40$ 00 $(0 + 0)^2 = 45 = 54 + 0^3$	[5 mai
	3 + 6	$r^2 - 10 \qquad 20 - (2 + 3)^2 \qquad 15 - 54 \div 3^\circ$	

King Edward VI Community College Mathematics Department

4 (a)	Simplify	<i>a</i> + <i>a</i> + <i>a</i> + <i>a</i> + <i>a</i> +	+a+a		[1 mark]
			Answer		
4 (b)	Simplify	$7 \times b \times c$			[1 mark]
			Answer		
4 (c)	Simplify	$12 \times d \times d \times d$	d		[1 mark]
			Answer		
4 (d)	Write as a s	ingle fraction in	its simplest form	$(5 \times m \times m) \div (8 \times n)$	[1 mark]
			Answer		
4 (e)	Write as a s	ingle fraction in	its simplest form	$(4 \times n \times n \times 5) \div (2 \times m \times 7)$	[2 marks]
			Answer		

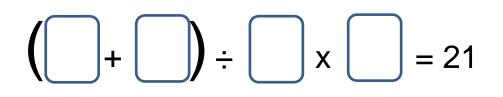
5	Circle the expression that describes 20 more than x .				[1 mark]
	20 > <i>x</i>	<i>x</i> + 20	20 <i>x</i>	<i>x</i> – 20	
6	1 kilogram of bananas costs 87	-	kilograms of banan	20	
	Write down an expression for the		kilograms of banan	d5.	[1 mark]
	A	nswer			pence
7	Which of these can be written a Circle all the possible answers.				[2 marks]
	$2 \times 8 \times a \times a$	$\times b$	$2 \times a \times a + b$	8 imes b	
	$32 \times a \times a \times a \div (2)$	$2 \times a \times b$)	$32 \times a \times a \times a \div 6$	$(2 \times a) \times b$	
8	Carys has just had a birthday. She is now A years old. Her brother, Joshua is 2 years y Her sister, Kiah, is twice as old	-			
	Write down an expression for th	neir total ag	е.		[3 marks]
	An	swer			

Basic algebra (2) – Foundation

		Simplifying expressions by collecting like terms	U105
		Simplifying expressions using index laws	U662
		Expanding single brackets	U179
Knowledge	Sparx	Expanding double brackets	U768
	Codes	Factorising into one bracket	U365
		Solving equations with one step	U755
		Solving equations with two or more steps	U325
		Solving equations with the unknown on both sides	U870
		Changing the subjects of formulae	U556

Work out the value of $40 - 2 \times 3^2$ 1

[1 mark]


Answer

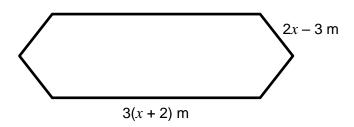
2 Sunita has these cards:

Choose four numbers from the cards to make the following calculation correct:

[1 mark]

3 Simplify $5 \times 3 \times f \times f \times f \times g \times g$

[2 marks]



4	Mr Mistry has 3 grandchildren. He gives Nimisha £ <i>m</i> . He gives Sunhil £80 less than Nimisha. He gives Akshay twice as much as Sunhil. Write down an expression for the total amount of money he gives them.	[3 marks]
5	Answer £ Multiply out $5(2a - 7)$	[2 marks]
6 6 (a)	Answer Expand and simplify $2(3h + 6) + 5(4h + 2)$	[3 marks]
6 (b)	Answer6 $(3j-2) - 4(2j+4)$	[3 marks]
	Answer	

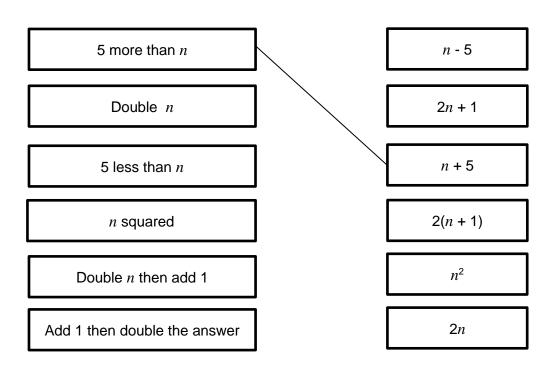
7 Sam wants to build a water play area for children.He wants the shape to have two lines of symmetry.

Work out an expression for the total perimeter of the shape.

[4 marks]

Answer _____ m

Basic algebra (3) – Foundation


				U105	
			Simplifying expressions by collecting like terms		
			Simplifying expressions using index laws	U662	
			Expanding single brackets	U179	
Kr	nowledge		Expanding double brackets	U768	
spa		parx odes	Factorising into one bracket	U365	
эра		0003	Solving equations with one step	U755	
			Solving equations with two or more steps	U325	
			Solving equations with the unknown on both sides	U870	
			Changing the subjects of formulae	U556	
			24.4.2		
	Work out the v	alue of	$24 + 4 \times 3^2$	[1	marl
				L'	man
			Answer		
? (a)	Simplify	$6 \times 2 \times d >$	$\langle d imes e$	[1	mar
2 (a)	Simplify	$6 \times 2 \times d >$	$\langle d imes e$	[1	mar
? (a)	Simplify	$6 \times 2 \times d >$		[1	mar
2 (a)	Simplify	$6 \times 2 \times d >$	< <i>d</i> × <i>e</i> Answer	[1	mar
: (a)	Simplify	$6 \times 2 \times d >$		[1	mar
: (a)	Simplify	6 imes 2 imes d imes		[1	mar
			Answer		mar
2 (a) 2 (b)				× h)	marl
			Answer	× h)	
			Answer	× h)	
			Answer	× h)	
			Answer	× h)	
			Answer	× h) [2	

Match each card on the left with a card on the right.The first one is done for you.

[2 marks]

Andrew pays £p for his phone.
Liz pays 3 times as much as Andrew.
Laura pays £20 less than Liz.

Write an expression for the total they pay. Simplify your answer.

[3 marks]

Answer £

5 Factorise fully each of the following expressions 5 (a) 20*a* + 16 [1 mark] Answer **5 (b)** 30*b* – 45 [1 mark] Answer _____ **5 (c)** $16c^3 + 24c$ [2 marks] Answer **5 (d)** $18d^3e - 27d^5e$ [2 marks] Answer

Basic algebra (4) – Foundation

1 Work out t	he value of	$3 + 4^2 - 20 \div 5$	
		Changing the subjects of formulae	U556
	Sparx Codes	Solving equations with the unknown on both sides	U870
		Solving equations with two or more steps	U325
		Solving equations with one step	U755
sparx 🙎		Factorising into one bracket	U365
Knowledge		Expanding double brackets	U768
		Expanding single brackets	U179
		Simplifying expressions using index laws	U662
		Simplifying expressions by collecting like terms	U105

[2 marks]

Answer

2 Insert brackets in the following to make it correct

[1 mark]

 $3 \times 4 + 2 \div 8 - 2 = 3$

3 George says that 4 + a + a + a + b + b = 24ab

Describe the mistakes George has made. Give the correct answer.

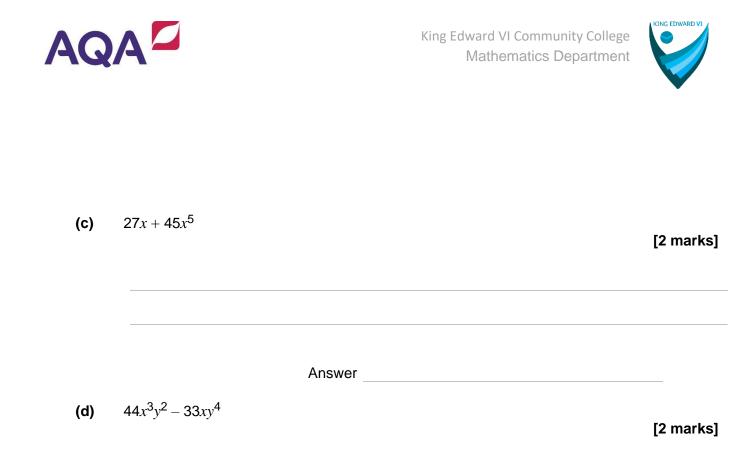
[2 marks]

4	On Monday David travels <i>m</i> miles.On Tuesday he travels 35 miles more than he did on Monday.On Wednesday he travels a total of twice the distance he travelled on Monday.Work out an expression for the total distance he travels during the three days.		
			[3 marks]
5	Multiply out $7(3a + 8)$	Answermile	es [2 marks]
6 6 (a)	Expand and simplify $4(5h + 7) + 2(5h - 7)$	Answer	[3 marks]
6 (b)	9(3 <i>k</i> + 1) – 5(2 <i>k</i> - 4)	Answer	[3 marks]

7

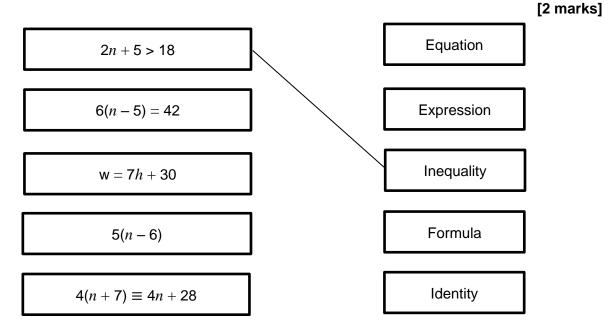
8

(a)


Answer A house has an open plan kitchen and lounge as shown. Not drawn accurately 3*x* - 2 m 4(x + 1) m Work out an expression for the total perimeter of the shape. Answer _____ m Factorise fully each of the following expressions 10*x* + 15

Answer (b) 36x - 48[1 mark] Answer _____

[4 marks]


[1 mark]

Page | 60

Answer

9 Match each of the following by drawing a line. The first one has been done for you.

W	Irite down all the integers, n , that satisfy the inequality	[2 marks]
	-3 < <i>n</i> ≤ 1	
_	Answer	
Sa	anjit wants to pick some strawberries.	
	e pays £3 for a box. e then pays £1.20 per kg of strawberries.	
W	/rite down a formula to work out the total cost, C , of picking s kg of strawberries	[1 mark]
	Answer	
Tł	hese two rectangles have the same area.	
2	(5x + 1) cm $(6x - 2) cm4 cm 6 cm$	
W	/rite down an equation to show this.	[1 mark]
	Answer	

Basic algebra (5) – Foundation

		Simplifying expressions by collecting like terms	U105
		Simplifying expressions using index laws	U662
		Expanding single brackets	U179
Knowledge	Sparx	Expanding double brackets	U768
sparx 🙎	Codes	Factorising into one bracket	U365
		Solving equations with one step	U755
		Solving equations with two or more steps	U325
		Solving equations with the unknown on both sides	U870
		Changing the subjects of formulae	U556
		Changing the subjects of formulae	U556

Work out the value of $40 - (2+3)^2 \div 5$ 1

[1 mark]

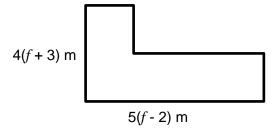
Answer

2 Which of these does not give an answer of 18? Circle your answer. [1 mark]

 $30 - 3 \times 6 + 6$ $6 + 3 \times 2$ $5 + 2^3 \times 2 - 3$

3 Simplify $2 \times 6 \times a \times a \times b \times b \times b$ using index notation

[2 marks]


4	Jean pays for gas, electricity and water every month.	
	Her gas bill is £G per month. Her electricity bill is £10 per month more than her gas bill. Her water bill is half the electricity bill.	
	Write down an expression for the total cost of the bills for 1 year.	[4 marks]
	Answer £	
5	Multiply out $7a(3a - 9)$	[2 marks]
	Answer	

6	Expand and simplify		
6 (a)	7(2x + 3) + 4(6x + 9)		[2 marks]
		Answer	
6 (b)	8(4 <i>y</i> – 3) – 3(5 <i>y</i> + 1)		[3 marks]
		Answer	

7 Fencing is needed to go around a school field as shown.

Work out an expression for the total length of fencing needed.

[4 marks]

AQ	A		King	Edward VI Community Mathematics Depa	
8	Factorise fully:				
8 (a)	27 <i>n</i> – 36				[1 mark]
8 (b)	36 <i>n</i> ² – 60 <i>n</i>	Answ	er		[2 marks]
8 (c)	$30n^2m^2 - 50n^3m^2$	Answ	er		[2 marks]
9	Use one of these w	Answo vords to describ		llowing	[3 marks]
	Expression	Equation	Identity	Formula	Inequality
9 (a)	5x + 3 = 2x – 6				
9 (b)	6a(2a – 7) ≡ 12a ² –	- 42a			
9 (c)	C = 12n + 36				

[2 marks]

10	Write down all the integers, i	n, satisfied by $-8 \le n < -1$
----	--------------------------------	---------------------------------

Answer

John gets paid £300 per week for working 35 hours.He then gets paid £15 per hour for any overtime.

Write down a formula for his total wages, w, when he works h hours overtime.

[1 mark]

Answer £

12 280 people attended a summer fair.The total cost for their food was £728.

Hotdogs cost *H* pence.Beefburgers cost 20p more than hotdogs.Ice creams cost twice as much as beefburgers.Each person ate one hotdog, one beefburger and one ice cream.

Write down an equation in terms of H for this information.

[3 marks]

Equations – Foundation

Kn	owledge		Using standard form with positive indices	U330
	J	Sparx	Using standard form with negative indices	U534
spar	rx 🙎	Codes	Multiplying and dividing numbers in standard form	U264
			Adding and subtracting numbers in standard form	U290
			Standard form with a calculator	U161
1 (a)	Solve	$\frac{x}{10} = 5$		[1 mark]
			<i>x</i> =	
1 (b)	Solve	2 <i>y</i> – 9 = 18		[2 marks]
			<i>y</i> =	
1 (c)	Solve	4w + 3 = 20 - 6v	W	[3 marks]
			<i>w</i> =	

2 A shop gives reward points based on the money in £ spent by a customer. It uses this formula.

reward points = $2 \times \text{money spent} + \text{bonus}$

The bonus is worked out using this table.

Money spent (to the nearest £)	1 to 20	21 to 50	50 to 100	More than 100
Bonus	5	10	20	25

2 (a) Amy spent £34

Work out her reward points.

[2 marks]

	Answer	
2 (b)	Bob was given 220 reward points.	
	How much, to the nearest £, did he spend?	
		[2 marks]

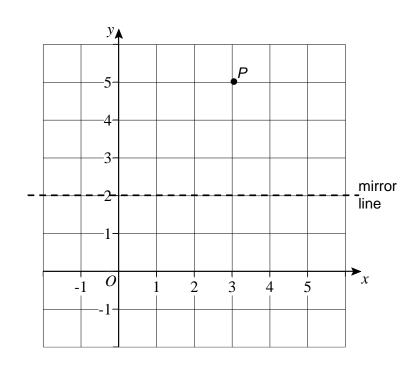
Answer £

	An expression for the <i>n</i> th term of a sequence is $n^2 + 2$	
	Write down the first three terms of the sequence.	[3 marks]
	Answer ,	
	Liam and Kyle share their energy bills equally.	
	Their electricity bill is $\pounds x$ Their gas bill is $\pounds 24$ more than their electricity bill.	
	They each pay £59	
	Work out the cost of the electricity bill and the cost of the gas bill.	
		[4 marks
	Electricity £	
	, ~	
	Gas £	

King Edward VI Community College Mathematics Department

5 Solve
$$\frac{6x+7}{5} = 2x - 4$$
 [3 marks]

x = _____



1

Coordinates and linear graphs – Foundation

Sparx Sparx Codes Using standard form with negative indices U534 Multiplying and dividing numbers in standard form U264	Knowledge	Spary	Using standard form with positive indices	U330
	Thomougo		Using standard form with negative indices	U534
	spary 0		Multiplying and dividing numbers in standard form	U264
Adding and subtracting numbers in standard form U290	spar A		Adding and subtracting numbers in standard form	U290
Standard form with a calculator U161			Standard form with a calculator	U161

Point *P* is reflected in the mirror line.

1 (a) Circle the equation of the mirror line.

[1 mark]

y = x + 2 x + y = 2 x = 2 y = 2

1 (b) Work out the coordinates of the reflection of point *P*.

[1 mark]

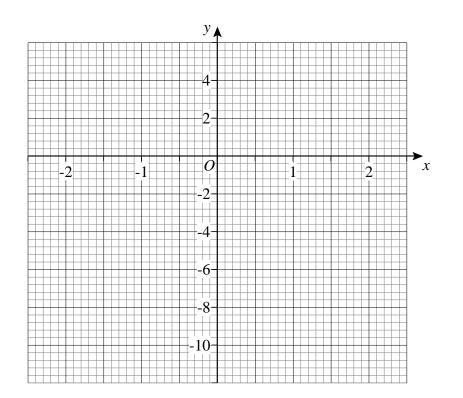
Answer (,)

2		У 🖡			
		6			
		5			
		4			
		3-			
		2-			
		1			
					_
	-6 -5 -4 -3	-2 -1 0 1		5 6	x
		-1			
		-2-			
		-3-			
		-4			
		-5-			
		-6			
>					
2 (a)	Plot the points $A(-3, 2)$ a	and $B(1, -2)$ on the g	jrid.		[2 marks]
2 (b)		x-coordinate as A			
		s the y-coordinate of I	B.		
	Plot C on the grid.				
	J				[2 marks]
• • • •					
2 (c)	Circle the two answers the	hat describe triangle A	ABC.		[2 marks]
	equilateral	isosceles	scalene	right-angled	
				0 0	

3 У 🖡 -6-Α -5-4 -3-М -2--1- \mathbf{F}_{x} -2 -1 0 -5 -3 2 3 -6 -4 1 4 5 6 -1--2--3-4 -5--6-**3 (a)** *M* is the midpoint of the line *AB*. Work out the coordinates of B. [2 marks] Answer (,) **3 (b)** Write down the coordinates of two other points on the line AB with midpoint *M*. [2 marks]

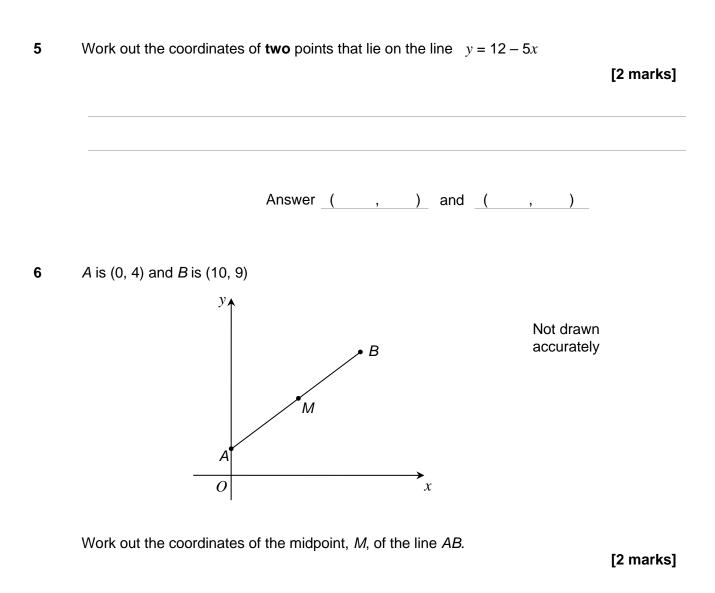
Answer (_____, ___) and _(____, ___)

King Edward VI Community College Mathematics Department


4 (a) Complete the table for y = 3x - 2

[2 marks]

x	-2	-1	0	1	2
у	-8		-2		4


4 (b) On the grid draw the graph of y = 3x - 2 for values of x from -2 to 2

[2 marks]

Answer (_____, ___)

Algebra: Quadratics, Rearranging Formulae and Identities – Foundation

-						
ĸ	now	ledge		Using standard form with positive ind	lices U330	
	110 W	leuge	Chony	Using standard form with negative in	dices U534	
sna	arx	0	Sparx Codes	Multiplying and dividing numbers in s	standard form U264	
Spe		K	00000	Adding and subtracting numbers in s	tandard form U290	
				Standard form with a calculator	U161	
1 (a)	Expand	$2y(x-3y^2)$			
. (u)	Expand	Ly(x = 0)			[2 marks]
				A		
				Answer		
1 (b)	Factorise	$e 8x + 3x^2$			
						[1 mark]
				Answer		
•		0				
2		Simplify				[3 marks]
		2				
2 (a)	a ⁶	$\times a^3$				
				_		
				Answer		
2 (b)	<u>a</u> ⁶					
- (~)	a ³					
				Anour		
				Answer		
2 (c)	(n	6ر3				
- (~)	(u	,				

	Answer	
3	Factorise $x^2 + 2x - 15$	[2 marks]
4	Answer Expand $(y+4)(y-3)$	[2 marks]
	Answer	
5	Make <i>x</i> the subject of $ax - by = cx - dy$	[3 marks]
	Answer	

Solving quadratic equations – Foundation (20 minutes)

Kn	owledge		Using standard form with positive indices	U330	
	omougo	Sparx	Using standard form with negative indices	U534	
		Codes	Multiplying and dividing numbers in standard form	U264	
		00000	Adding and subtracting numbers in standard form	U290	
			Standard form with a calculator	U161	
I	Expand and	d simplify (x	(x + 5) (x - 4)		[2 marks]
			Answer		
	Factorise	$x^2 + 12x + 2$	20		[2 marks
			Answer		
	Solve the e	equation x^2	+4x - 12 = 0		[3 marks
			Answer		

4	Solve the equation $x^2 - 25 = 0$	[1 mark]
5	Answer Solve $x^2 - 11x + 30 = 0$	[3 marks]
6	Answer The area of the rectangle is 66 cm ²	

6 (a) Using this information, show that $x^2 + 7x - 60 = 0$

[3 marks]

Answer

6 (b) Solve the equation to find *x*

[3 marks]

Answer

Indices – Foundation (20 minutes)

Kr spa	arx	Sparx Codes		form with nega dividing numb stracting numb	ative indices ers in standard form ers in standard form	U330 U534 U264 U290 U161
	t ion A nutes. Calcul	ator.				
1	What whole	e number pow	er of 2 is 1024	?		[1 mark
			Answer			
2	Circle the n	umber that is	a power of 7			[1 marl
		14	77	343	490	
3	Use your ca	alculator to wo	rk out			
3 (a)	$\frac{\sqrt{33.64}}{19.8+9.2}$					[1 mark
			Answer			

3 (b)	How much less than 1000 is 9.8 ³ ?	[1 mark]
4	Answer Work out $\frac{2^7 \cdot 3^5}{6^3}$	[1 mark]
5 (a)	Answer Write $11^{20} \div 11^4$ as a single power of 11	[1 mark]
5 (b)	Answer Write 4 ⁵ as a single power of 2	[1 mark]
6	Answer Write 91 as the sum of two cube numbers.	[1 mark]
	Answer	

7	Raj and his sister Zia are both at secondary school. Raj is three years older than Zia. The sum of the squares of their ages is 369 How old are they?	[2 marks]
	Zia =	years old
	Raj =	years old

Non-ca Put yo	ion B alculator. ur calculator away ay still work on se		you must not u	use a calculator		
8	Circle the number	er that is 1 n	nore than a cut	be number		[1 mark]
	1()	26	37	65	[]
9	Circle the numbe	er that is no t	t a whole numb	per power of 3		[1 mark]
	9		18	27	81	
10	Write down the v	value of $\sqrt{1}$	96			[1 mark]
	Γ		Answer			
11	Work out $\sqrt{2}$	⁴ + 3 ²				[2 marks]
12	Write $\sqrt{1 \text{ million}}$ a		Answer of 10			[1 mark]
13	Solve the equation					
						[2 marks]
			Answer			

14 Tina says,

"The difference between any 2 consecutive square numbers is **always** odd."

Is she correct?		
Yes	No	
Give reasons for your answer.		
		[2 marks]

Standard form – Foundation

Knowledg	e	Using st	tandard form with	positive indices	U330	
Knowledg	le			 A second sec second second sec		
		Using st	tandard form with	negative indices	U534	
	Spar Code		ing and dividing nu	umbers in standard form	U264	
sparx			and subtracting nu	umbers in standard form	U290	
		Standar	d form with a calc	ulator	U161	
ou may use	e your calc	ulator in this se	ction.			
	are five num					
47	000	4.5 × 10 ⁴	5 × 10 ³	2.8 × 10 ⁵	125 000	
Work	out the diffe	rence between t	he largest and si	mallest numbers.		
Give y	our answer	in standard form	۱.		[0]	
					[3]	mark
		Answ	er			
		7 (110)				
Work	out (5.9 ×	$(10^7) \div (2.3 \times 10^7)$	⁴)			
Give y	our answer	in standard form	n to 2 significant	figures.		
					[3	mark
		Answ	er			
		Answ	er			

Give your answer in stand	ard form.	[2 m
		[2
	<i>x</i> =	
Here are the probabilities	of two independent events.	
Event A Event B	2.7 × 10 ^{−2} 3.4 × 10 ^{−4}	
How many times more like	ely is event A than event B?	
		[2 m

Answer

Put yo	alculator. ur calculator away.	on A but you must not	use a calculator.				
5		[1 mark]					
	6.4 × 5 ^{−7}	0.9 × 10 ^{−7}	1 × 10 ⁻⁷	10 × 10 ⁻⁷	[T mark]		
6	Write 32 million in standard form.						
		Answer					
7	Write 4.12 × 10 ⁻⁶ a	s an ordinary number.			[1 mark]		
		Answer					
8	Work out (5 × 10 ⁻³ Give your answer i				[2 marks]		
		Answer					

9 The table shows the surface area of six planets.

Planet	Planet Surface area (km ²		
А	8.10 × 10 ⁹		
В	460 million		
С	6.20 × 10 ¹⁰		
D	7.64 × 10 ⁹		
E	1.45 × 10 ⁸		
F	4.27 × 10 ¹⁰		

9 (a) Circle the planet with the smallest surface area.

А	В	С	D	Е	F	

9 (b) Circle the planet with the largest surface area.

A B C D E F

10 The area of the Earth covered by water is 361 million km² The area of the Earth **not** covered by water is 149 million km²

Work out the total area of the Earth. Give your answer in standard form.

[3 marks]

[1 mark]

[1 mark]

Answer

km²