

Year 11 Higher PPE Mark Scheme Contents

Topic	Page
Ratio and proportion	$3-5$
Growth and decay/compound interest	$6-7$
Calculating with percentages	$8-9$
Number, fractions and decimals	$10-12$
Indices and roots	$13-14$
Standard form	$15-16$
Forming and solving equations	$17-18$
Equations of lines	$19-20$
Equations	$21-23$
Algebraic fractions	$24-25$
Quadratics and rearranging formula	$26-27$
Functions, quadratics, identities and rearranging formula	$28-29$
Linear and quadratic equations and their graphs	$30-31$
Simultaneous equations	$32-33$
Perimeter and area	$34-35$
Circumference and area	$36-37$
Geometry and measure	$38-39$
Volume	$40-41$
Pythagoras' Theorem and basic trigonometry	$42-43$
Trigonometry	$44-45$
Sine and Cosine rule	$46-47$
Collecting and representing data	$48-50$
Statistics recap and review	$51-52$
Statistical measures	$53-54$
Basic probability	$55-57$
Venn diagrams, tree diagrams and relative frequency	$58-59$

Ratio and Proportion - Higher Mark Scheme

Q	Answer	Mark	Comments		
$\mathbf{1 (a)}$ $y=\frac{x}{5}$ B 1 $5+1: 5-1$ M 1 $6: 4(=3: 2)$ A 1					
:---					

2	Alternative method 1		
	$630 \div 100 \times 125$ or 787.5	M1	oe Works out calories in 90 nuts
	their $787.5 \div 90$	M1dep	
	8.75	A1	oe Accept 9 with working
	Alternative method 2		
	$90 \div 125 \times 100$ or 72	M1	oe Nuts per 100 g
	$630 \div$ their 72	M1dep	
	8.75	A1	oe Accept 9 with working

3	2 parts $\rightarrow 9$	M1	oe eg $1: 3,2: 6, \ldots 4.5: 13.5$
	$9 \div 2 \times 6$	M1	oe eg 4.5 $: 13.5: 27$
	27	A1	

| Q Answer | Mark | Comments |
| :---: | :---: | :---: | :---: |

4	Alternative method 1		
	$6 \div\left(\frac{1}{2}+\frac{1}{4}\right)$ or 8 (portions)	M1	oe eg $\frac{1}{2}: \frac{1}{4}=4: 2$
	their $8 \times \frac{1}{2} \times 80$ or 320	M1dep	oe eg 4×80
	their $8 \times \frac{1}{4} \times 100$ or 200	M1dep	dependent on first M oe eg 2×100
	520	A1	
	Alternative method 2		
	$6 \div\left(\frac{1}{2}+\frac{1}{4}\right)$ or 8 (portions)	M1	oe
	$\frac{1}{2} \times 80+\frac{1}{4} \times 100$ or 65	M1	
	their $40+$ their $65 \times$ their 8	M1dep	dependent on both Ms
	520	A1	

5	$(12.5-2) \div 5 \times 2$ or 4.2	M1	oe
	$(7.5-1) \div 5 \times 2$ or 2.6	M1	oe
	$(6.2,3.6)$	A2	A1 for each correct coordinate

| Q Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |

6	Alternative method 1		
	$4 x-25$ and $3 x$	M1	
	$\frac{4 x-25}{3 x}=\frac{7}{9} \quad$ or $\quad x=15$	M1dep	oe eg $9(4 x-25)=21 x$
	45	A1	
	Alternative method 2		
	Two ratios equivalent to $4: 3$ and 7:9 with the second parts common	M1	eg 12:9 and 7:9
	Builds up their ratios until the first parts have a difference of 25	M1dep	$\begin{aligned} & \text { eg } 24: 18,14: 18 \quad 36: 27,21: 27 \\ & 60: 45,35: 45 \end{aligned}$
	45	A1	

Growth and decay/Compound interest Higher Mark Scheme

Q	Answer	Mark	Comments
1	1.13	B1	
2	2185.454	B1	
3	$A=P\left(1+\frac{r}{100}\right)^{n}$	B1	
4	$\stackrel{\square}{ \pm}$	B3	B2 3307.50 and 3 and 3472.88 B1 for 3307.50 and 3
5	1.038 seen	B1	
	$4000 \times(1.038)^{4}$ or 4643.54...	M1	
	643.54	A1	
6	1.029 seen	B1	
	$5000 \times(1.029)^{3}$	M1	
	5447.74	A1	

| Q Answer | Mark | Comments |
| :---: | :---: | :---: | :---: |

7	10×0.6^{n}	M 1	oe
	Any value calculated for $n>1$ $n=2$ gives 3.6 $n=3$ gives 2.16 $n=4$ gives 1.296 $n=5$ gives 0.7776	M1	
	At least 2 values calculated accurately	A 1	
	5	A 1	

$\mathbf{8}$	Decreases by 3.2\%	B1	

9	10000×0.94^{n} stated or implied or 94% left each day	M1	
	Explanation that calculator used with an iterative process, using Ans \times 0.94 with continually pressing equals or correct calculations seen	M1dep	
	11	A1	

Calculating with percentages - Higher Mark Scheme

| Q Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |

8(a)	$270 \div 2.25$ or 120 or $x+x+0.25 x=270$	M1	oe
	150	A1	
	$0.4 \times$ their $150+0.3 \times(270-$ their $150)$ or $60+36$ or 96	M1	oe
	$[35,36]$	A1ft	

Number, fractions and decimals - Higher Mark Scheme

Q	Answer	Mark	Comments
1	$\frac{1}{5}$	B1	
2	4.1	B1	
3	1.05	B1	
4	3.772	B2	$\begin{array}{ll} \text { B1 } & 0.4715 \times 8 \\ \text { or } & \text { digits } 3772 \text { eg } 0.3772 \end{array}$
5	$\frac{5}{3}(\times) \frac{21}{5}$ or $\frac{105}{15}$ or $\frac{21}{3}$ or $\frac{35}{5}$	M1	Converts both fractions to improper with at least one correct
	7	A1	
6	Any two numbers rounded to 1 significant figure 200, 4 or 0.1	M1	
	200 and 4 and 0.1 or $\frac{800}{0.1}$	M1	
	8000	A1	Must come from $\frac{200 \times 4}{0.1}$

| Q Answer | Mark | Comments |
| :---: | :---: | :---: | :---: |

7	$1-\frac{5}{8}$ or $\frac{3}{8}$ or $1-\frac{9}{20}$ or $\frac{11}{20}$ or $\frac{5}{8}+\frac{9}{20}$ or $\frac{43}{40}$	M1	oe
$\frac{9}{20}-$ their $\frac{3}{8}$ or $\frac{5}{8}-$ their $\frac{11}{20}$ or their $\frac{43}{40}-1$	M1	oe	
	A1	oe	

8	$240 \div \frac{2}{5}$ or 600	M1	oe $240 \div 2 \times 3$ scores M2
	their $600-240$ or 360	M1	
	their $360 \div 4$ or 90	M1	Condone $600 \div 4$
	270	A1	SC3 450 SC2 150

| Q Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |

	Alternative method 1		
	$10 x=2.33 \ldots$ and $9 x=2.1$	M1	$\begin{aligned} & \text { oe } \\ & 100 x=23.33 \ldots \text { and } 99 x=23.1 \end{aligned}$
	$\frac{21}{90}$	M1	oe fraction $\frac{231}{990}$
	$\frac{7}{30}$	A1ft	ft correct simplification of fraction with M1 scored
	Alternative method 2		
	$\begin{aligned} & 0.2+0.033 \ldots=\frac{2}{10}+0.033 \ldots \\ & \text { and } \\ & 100 x=3.33 \ldots \\ & \text { and } \\ & 99 x=3.3 \end{aligned}$	M1	oe
9	$\frac{198}{990}+\frac{33}{990}$ or $\frac{231}{990}$	M1	oe fractions
	$\frac{7}{30}$	A1ft	ft correct simplification of fraction with M1 scored
	Alternative method 3		
	$\frac{2}{10}+\frac{3}{90}$	M1	
	$\frac{18}{90}+\frac{3}{90}$ or $\frac{21}{90}$	M1	
	$\frac{7}{30}$	A1ft	ft correct simplification of fraction with M1 scored
	Alternative method 4		
	$10 x=2.33 \ldots=\frac{7}{3}$	M1	
	$\frac{7}{3} \div 10$	M1	
	$\frac{7}{30}$	A1	

Indices and roots - Higher Mark Scheme

Q	Answer	Mark	Comments
1(a)	0.2	B1	oe
1(b)	4.5	B1	
2	14 or 2^{14}	B1	
3	4	B1	
4	12	B1	
5	$\begin{aligned} & 11^{2}+14^{2}=317 \\ & \text { or } 12^{2}+15^{2}=369 \\ & 13^{2}+16^{2}=425 \end{aligned}$	M1	
	12 and 15	A1	

$\mathbf{6 (a)}$	11^{6}	B1	Accept 6
$\mathbf{6 (b)}$	2^{30}	B1	Accept 30

7	$216+8$	B1	

$\mathbf{8}$	$[9.2,9.5]$	B1			
$\mathbf{9}$	4 and 5	B1			
$\mathbf{1 0}$ 10^{4} B1					
:---					

| Q Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |

11	7	B1	
	-7	B1	

12	$\begin{array}{l}\text { Yes ticked and } \\ \text { odd } \times \text { odd }=\text { odd } \\ \text { even } \times \text { even }=\text { even } \\ \text { odd }- \text { even }=\text { odd } \\ \text { and even }- \text { odd }=\text { odd }\end{array}$	B2	$\begin{array}{l}\text { B1 for Yes ticked and 2 examples } \\ \text { shown to be true } \\ \text { or }\end{array}$

13 [2.8, 2.95]
B1

14	Two of $\begin{aligned} & a=2, b=6 \\ & a=8, b=2 \\ & a=4, b=3 \end{aligned}$	B2	B1 any one correct

Standard form - Higher Mark Scheme

| Q Answer | Mark | Comments |
| :---: | :---: | :---: | :---: |

$\mathbf{1}$	Selects 5×10^{3} and 2.8×10^{5}	B1	
	275000	M1	oe May be implied by correct standard form Condone their largest - their smallest correctly evaluated
	2.75×10^{5}	A1ft	ft B0M1 converts their difference to standard form

2	2565.(...)	B1	oe May be implied by correct final answer
	2.6×10^{3} or 3×10^{3}	B2ft	ft their answer converted to standard form and rounded to 2sf or 1sf
			B1ft Correct use of standard form $2.565 \ldots \times 10^{3}$
			or
			Correct rounding to 2 sf or 1 sf 2600 or 3000 oe

3	0.0000062	B1	oe May be implied by correct final answer
	6.2×10^{-6}	B1ft	ft their answer converted to standard form

4	$5.2 \times 10^{8} \div 645$	M 1	oe
	$806201 .(\ldots)$	A1	oe May be implied by correct standard form
	8×10^{5} or 8.1×10^{5} or 8.06×10^{5} or $8.062 \ldots \times 10^{5}$	B1ft	ft their answer converted to standard form

Q	Answer	Mark	Comments
5(a)	$\left(2.7 \times 10^{-2}\right) \div\left(3.4 \times 10^{-4}\right)$	M1	oe $0.0270 \div 0.000340$
	79.(...) or 80	A1	
5(b)	$\left(2.7 \times 10^{-2}\right) \times\left(1-\left(3.4 \times 10^{-4}\right)\right)$ or $\left(3.4 \times 10^{-4}\right) \times\left(1-\left(2.7 \times 10^{-2}\right)\right)$	M1	$\begin{aligned} & \text { oe } \\ & 0.0270 \times 0.99966 \\ & \text { or } \\ & 0.000340 \times 0.973 \end{aligned}$
	$\left(2.7 \times 10^{-2}\right) \times\left(1-\left(3.4 \times 10^{-4}\right)\right)$ and $\left(3.4 \times 10^{-4}\right) \times\left(1-\left(2.7 \times 10^{-2}\right)\right)$	M1	oe
	0.02732164	A1	oe May be implied by correct final answer
	0.0273	A1ft	ft their answer rounded to 3sf if M1M1 scored
6	$3.72 \times 10^{13} \div 9 \times 5$	M1	
	$2.066 \ldots \times 10^{13}$	A1	oe May be implied by correct final answer
	2.07×10^{13} or 2.1×10^{13} or 2×10^{13}	A1ft	ft their answer in standard form and rounded to 3sf, 2sf or 1sf if M1scored

Forming and solving equations - Higher Mark Scheme

Q \quad Answer \quad Mark \quad Comments | Q |
| :--- |

1	$7 n-6 n^{2}$	B1	
2	$a^{2}-4 a$	B1	
3	$5 x(2 x-y)$	B2	B1 $x(10 x-5 y)$ or $5\left(2 x^{2}-x y\right)$
	$\left(3 x^{2}+\right) 36 x$ or $36=c^{2}$	M1	May be implied by 6 or -6
4	6	A1	
	-6	A1	

5	$3(4 x+2)+3(4 x+2)+6(x-2)+$ $6(x-2)$	M1	oe
	$36 x-12$	M1	Expands brackets and collects terms Allow one error
	their $(36 x-12) \div 3$	M1	
	$12 x-4$	A1	SC2 $12 x+6$ and $6 x-12$ seen SC1 $12 x+6$ or $6 x-12$ seen

6	$6 x-6 k=5 x+4$	M1	
	$6 x-5 x=6 k+4$ or $x=6 k+4$	M1	
	Explanation that $6 k+4$ is an even number eg shows that both terms are divisible by 2 or $6 k+4=2(3 k+2)$	A1	oe

| Q Answer | Mark | Comments |
| :---: | :---: | :---: | :---: |

7	$10 x^{2}-5 x$ or $3 x+3$ $5 x(2 x-1)-3(x+1)$ or their $\left(10 x^{2}-5 x\right)-$ their $(3 x+3)$	M1	
	$10 x^{2}-8 x-3$	A1	

$\mathbf{8}$	$21 x-3-6 x-24+2$	M1	Allow one error
	$15 x-25$	A 1	
	$5(3 x-5)$	A 1	

Equations of lines - Higher Mark Scheme

Q	Answer	Mark	Comments
1	$y-2 x=0$	B1	
2	$y=\frac{8-x}{2}$	B1	
3	$y-2 x=0$	B1	
4	$y=(3 x+8) \div 2$ or substitutes $x=0$	M1	oe
	$(0,4)$	A1	
	$\frac{6-0}{0-2}$	M1	oe
5	-3	A1	
	$y=-3 x+6$	A1ft	oe ft their gradient
	$3 x=2-14$	M1	
	-4	A1	
7	[0.2, 0.4]	B1	oe
8	$2 x+8$	B1	
	$5 x-$ their $2 x=$ their $8-1$	M1	
	$\frac{7}{3}$	A1	

| Q Answer | Mark | Comments |
| :---: | :---: | :---: | :---: |

9(b)	$\frac{20}{75}$ or 1.25 seen	M1	oe
	16	A 1	

$\mathbf{1 0}$ (a)	Correct values in table: $2,4,16$ and 32.	B1	
	Points plotted correctly	B1ft	ft their values in table
	Smooth curve through all points	B1ft	ft their values in table
$\mathbf{1 0 (b)}$	Gets close to zero or gets close to x-axis	B1	oe Do not accept equals 0.

Equations - Higher Mark Scheme

| Q Answer | Mark | Comments |
| :---: | :---: | :---: | :---: |

1	Alternative method 1		
	$25+\frac{9 \times 56}{2}$ or 277	M1	
	277 and No	A1	
	Alternative method 2		
	$(275-25) \times 2 \div 9$ or 55	M1	
	55 and No	A1	

2	$(-2)^{3}$ and $\sqrt{12 \times-2+40}$	M1 (2) and $\sqrt{12 \times 2+40}$	M1 Correct substitution in both sides of the equation
	$-2 \rightarrow-8=4$ No and $2 \rightarrow 8=8$ Yes	Correct substitution in both sides of the equation	

| Q Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |

3	Alternative method 1		
	$\frac{2 x}{3}+4=x+1$	M1	
	$3=\frac{x}{3}$	M1	
	9	A1	
	Alternative method 2		
	$\begin{aligned} & \frac{x}{3}+2=\frac{x}{2}+\frac{1}{2} \\ & \text { and } \frac{x}{3}-\frac{x}{2}=2-\frac{1}{2} \end{aligned}$	M1	
	$\frac{x}{6}=1 \frac{1}{2}$	M1	
	9	A1	

4	$5 x-2$	B 1	
	$3(x+1)=3 x+3$	B 1	
	their $(5 x-2)=$ their $(3 x+3)$ or $2 x=5$	M 1	oe
	$\frac{5}{2}$ or $2 \frac{1}{2}$ or 2.5	A1ft	ft incorrect bracket expansion

| Q Answer | Mark | Comments |
| :---: | :---: | :---: | :---: |

5	$7(2 x+3)=14 x+21$ or $3(x-1)=3 x-3$	M1	
	their $(14 x+21)-$ their $(3 x-3)=84.5$ or $11 x+24=84.5$	M1dep	oe
	$\frac{11}{2}$ or $5 \frac{1}{2}$ or 5.5	A1	
	$2 \times(x-1+3)$	M1	
	15	A1ft	ft $2 \times$ (their $5.5+2$)

| 6
 $3 w-5=2 w+4$
 or
 $\frac{3 w}{2}-\frac{5}{2}=w+2$ | B 1 | |
| :---: | :--- | :--- | :--- |
| | M 1 | ft their four terms |
| | A1ft | $\mathrm{ft} \mathrm{B0M1}$ |

Algebraic fractions - Higher Mark Scheme

Q	Answer	Mark	Comments
1	$\frac{2 a^{2}+3 b^{2}}{a b}$	B1	
2	$\frac{x}{4 y}$	B1	
3	$\frac{2}{5 e}$	B1	
4	$\frac{2}{x y}$	B1	
5	y^{2}	B1	Accept $1 y^{2}$
6	Mya's answer is correct but from wrong working. She should have factorised the top and cancelled the common bracket $\begin{aligned} & \text { ie } \frac{(3 x-y)(3 x+y)}{3 x-y} \\ & =3 x+y \end{aligned}$	B2	B1 for partial explanation Or B1 for sight of $(3 x-y)(3 x+y)$

7(a)	$(x-4)(x+4)$	B 1	Either order
7(b)	$(x \pm a)(2 x \pm b)$	M 1	Allow where $a b=12$
	$(x-4)(2 x+3)$	A 1	
	$\frac{x+4}{2 x+3}$	A 1	

| Q Answer | Mark | Comments |
| :---: | :---: | :---: | :---: |

$\mathbf{8}$	$(3 y \pm a)(y \pm b)$	M 1	$a b=2$
	$(3 y-2)(y+1)$	A 1	
	$y+1$	A 1	

9	$\frac{(3 x-2)(3 x+2)}{(4 x-1)(3 x+2)}$	M 1	

$\mathbf{1 0}$	Attempt to factorise numerator or denominator	M1	
	$(2 x+1)(x-5)$	A1	either order
	$(2 x+1)(3 x+4)$	A1	either order
	$\frac{x-5}{3 x+4}$	A1	

Quadratics and rearranging formula - Higher Mark Scheme

| Q Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |

$\mathbf{1 (a)}$	x^{6}	B1	
$\mathbf{1 (b)}$	$4 y^{6}$	B2	B1 for 4, B1 for y^{6}

2	$x^{2}-5 x+2 x-10$	M1	Allow one sign or arithmetic error but must have 4 terms, one in x^{2} two in x and a constant term
	$x^{2}-3 x-10$		

3	$2 w=P-2 l$	M1	
	$w=\frac{P-2 l}{2}$	A 1	

4(a)	$(x-6)(x+6)$	B1	Either order
4(b)	$(3 x-4)(3 x+4)$	B2	Either order B1 for $\pm 3 x$ B1 for ± 4

5	$9 a-6 b$ or $15 a-10 b$	M1	oe
	$\frac{3(3 a-2 b)}{5(3 a-2 b)}=\frac{3}{5}$	A1	

6	$(x \pm a)(x \pm b)$	M1	$a b=14$
	$(x+7)(x-2)$	A1	

| Q Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |

7	(width $=) 2 x+1$	B1	
	$(3 x-1) \times$ their $(2 x+1)$	M1dep	
	$6 x^{2}+x-1$	A1ft	ft their width

8(a)	$r=\frac{A}{l}$	B 1	
8(b)	$l^{2}=r^{2}+h^{2}$	B 1	
8(c)	$V=\frac{1}{3} r^{2} \sqrt{l^{2}-h^{2}}$	B 1	

Functions, quadratics, identities and rearranging formula - Higher Mark Scheme

| Q Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |

8	$y(4 x+5)=2 x-1$	M1	
	$4 x y-2 x=-1-5 y$	M1dep	
	$x=\frac{-1-5 y}{4 y-2}$ or $\frac{1+5 y}{2-4 y}$	A1	

9	$(3 x+2)(3 x-2)$ and $(2 x+3)(3 x-2)$	M 1	
	$d=9$	A 1	
	$a=6$ and $b=5$ and $c=-6$	A 1	

Linear and quadratic equations and their graphs - Higher Mark Scheme

| Q Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |

1(a)	Straight line graph from $(-3,-5)$ to $(3,7)$	B2	B1 for partial graph or B1 for at least 2 correct coordinates seen in table or on graph
1(b)	Line from $y=4$ and line from intersection to $x=1.5$	B1	

2	$2 x+1+12=12(x-1)$	M1	
	$10 x=25$	M1	
	2.5	A1	

3	$3 x-5+2 x+20+x+15=180$	M1	
	$6 x+30=180$	A1	
	$x=25$	A1	
	$3 x-5=70$ and $2 x+20=70$ and statement about equal angles in isosceles triangle	A1	

4	Intercept $=(0,-1)$		B3
Turning point $=(-1,-2)$	B2 3 correct		
B1 1 or 2 correct			
Negative root $=[-2.5,-2.4]$			
Positive root $=[0.4,0.5]$			

5(a)	$(-4,0)$ and $(1,0)$	B 1	
5(b)	$\left(-2 \frac{1}{2},-5 \frac{1}{4}\right)$	B 1	

Q	Answer	Mark	Comments

6(a)	$(x+3)^{2}$	M1	
	$(x+3)^{2}-14=0$	A1	
			B2 3 points correct B1 2 points correct
6(b)			

Simultaneous equations - Higher Mark Scheme

| Q Answer | Mark | Comments |
| :---: | :---: | :---: | :---: |

6	$x^{2}+x-3=2 x+3$	M1	oe
	$x^{2}-x-6=0$	M1dep	oe
	$(x-3)(x+2)=0$	M1dep	$\frac{--1 \pm \sqrt{(-1)^{2}-(4 \times 1 \times-6)}}{2 \times 1}$
	$x=3$ and $x=-2$	A1	
	$y=9$ and $y=-1$	A1ft	ft their x values

Perimeter and area - Higher Mark Scheme

| Q Answer | Mark | Comments |
| :---: | :---: | :---: | :---: |

$\mathbf{1}$	$4(x-1.5)$ or $4 x-6$ or $3 x$	M1	oe
	$4(x-1.5)=3 x$ or $4 x-6=3 x$	M1dep	oe Forms an equation in x from their two perimeters

$\mathbf{2}$	$0.5 \times 4 \times(5+11)$	M1	oe
	(their $32 \div 4)=3.2 x$ or (their $32 \div 4) \div 3.2$	M1	oe
	2.5	A1	

3	One correct relevant expression $12(2 x+6)$ or $8(2 x+6)$ or $4(x+4)$ or $12(x+4)$ or $8(x+4)$ $8(x+2)$ or $4(x+2)$	M1	oe
	A complete 'set' of areas that would combine to give total area $12(2 x+6)$ and $4(x+2)$ $8(2 x+6)$ and $4(x+4)$ or $12(x+4)$ and $8(x+2)$ $4(x+4)$ and $8(x+4)$ and $8(x+2)$	M1dep	oe The first pair are for the subtraction method
	$20 x+64$	A1	

| Q Answer | Mark | Comments |
| :---: | :---: | :---: | :---: |

4a	$13.7^{2}-10.5^{2}$	M1	
	$\sqrt{13.7^{2} 10.5^{2}}$ or 8.8	M1	
	(10.5 \times their 8.8) $\div 2$ or 46.2	M1	Allow 10.5×8.8 or 92.4 for area of both triangles
	$12 \times 13.7 \text { or } 164.4$ and $12 \times$ their 8.8 or 105.6 and $12 \times 10.5 \text { or } 126$	M1	Allow one error
	488.4	A1	
4b	Too small - always overlap	B1	oe

$\mathbf{5}$	$504-144$ or 360	M1	
	(their $360 \div 2) \div 12$ or (their $360 \div 4) \div 6$	M1	oe
	15	A1	

6	$\frac{1}{2} x \times 6 \times\left(\sin 30\right.$ or $\left.\frac{1}{2}\right)=15$	M 1	
	10	A 1	

Circumference and area - Higher Mark Scheme

| Q Answer | Mark | Comments |
| :---: | :---: | :---: | :---: |

5	$\frac{45}{360} \times 2 \pi r=18$	M1	oe
	$r=\frac{18 \times 360}{45 \times 2 \pi}$	M1dep	oe
	$[22.91,22.93]$ or 23	A 1	

6	$\frac{\theta}{360} \times \pi \times 5^{2}=5 \pi$	M 1	oe
	$\theta=\frac{5 \pi \times 360}{25 \pi}$	M 1 dep	oe
	$72\left(^{\circ}\right)$	A 1	
	$\frac{\text { their } 72}{360} \times 2 \times \pi \times 5$ or $[6.28,6.284]$	M 1	oe
	2π	A 1 ft	ft their 72°

Geometry and measure - Higher Mark Scheme

Q Answer
M Mark Comments $\mathbf{1}$ $(3,0)$ B1 $\mathbf{2}$ $(1,3)$ B1 $\mathbf{3}$ $(2,1)$ B1

$\mathbf{4}$	Enlargement	B1	
	(SF) $\frac{1}{2}$	B1	
	Centre $(1,1)$	B1	

5	$\frac{x}{360} \times \pi \times 2 \times 4$	M1	oe
	$\left(\frac{x}{360} \times \pi \times 2 \times 4\right)+4+4=12$	M1dep	oe
	$[57.2,57.3]$	A1	

| Q Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |

6	$\frac{1}{2} \times \frac{4}{3} \times \pi \times r^{3}$	M1	oe
	$(3 r)^{2}-r^{2}$ or $8 r^{2}$	M1	oe
	$\sqrt{8 r^{2}}$ or $\sqrt{8} r$	M1dep	oe
	$\frac{1}{3} \times \pi \times r^{2} \times$ their $\sqrt{8 r^{2}}$	M1dep	oe
	$\frac{2 \sqrt{2}}{3} \pi r^{3}+\frac{2}{3} \pi r^{3}$	A1	

7	$\pi \times 20 \times 15$ or 300π or $942.47 .$.	M1	
	their $9.4247 . . \times 3.60$ or 33.93	M1dep	
	$1000 \div 33.93$ or $29.47 .$.	M1dep	
	29	A1	

8	$(\cos \mathrm{~A}=) \frac{5^{2}+6^{2}-7^{2}}{256}$	M 1	
	$\frac{-8}{60}$ or answer negative so obtuse	A 1	

Volume - Higher Mark Scheme

3	Any side correctly identified, 3, 5 or 7	M1	
	All 3 sides correctly identified	M1dep	
	105	A1	
4	$\frac{2}{3} r^{3}=\frac{1}{3} r^{2} h$	M1	
	$2 r$	A1	

$\mathbf{5}$	$8: 27$	B 1	

6	$2(a b+b c+a c)$	B 1	

| Q Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |

7	6^{3} or $216=8 \times 9 \times h$ or $72 h$	M1	
	3	A1	

$\mathbf{8}$	$\frac{1}{3} \pi \times 3^{2} \times 4$	M1	
	12π	A1	Accept 37.68 or 37.704

9	$r^{3}=\frac{3}{4} \times 36$	M 1	oe
	$r=3$	A 1	

Pythagoras' Theorem and basic trigonometry
 - Higher Mark Scheme

Q	Answer	Mark	Comments
1	$\frac{2}{\sqrt{13}}$	B1	
	$180 \div 40 \times 2$ or 9	M1	
2	$\sqrt{\text { their } 9^{2}+40^{2}}$ or 41	M1dep	
	their $41+$ their $9+40$	M1dep	
	90	A1	
3	$\sqrt{2.5^{2}-2.2^{2}}$	M1	
	No and [1.18, 1.2]	A1	
4	$\tan \mathrm{A}=\frac{b}{a}$	B1	
5(a)	$A C=\sqrt{x^{2}+y^{2}}$	M1	
	$A D^{2}=x^{2}+y^{2}+x^{2}$	M1 dep	
	$\sqrt{2 x^{2}+y^{2}}$	A1	

Q	Answer	Mark	Comments
5(b)	$\frac{x}{\sqrt{x^{2}+y^{2}}}=\frac{1}{3}$	M1	
	$9 x^{2}=x^{2}+y^{2}$	M1	
	$\begin{gathered} 8 x^{2}=y^{2} \\ \frac{x}{y}=\frac{1}{\sqrt{8}} \end{gathered}$	M1	oe
	$\tan 19.5=0.354 \ldots$ and $\frac{1}{\sqrt{8}}=0.3535 \ldots$	A1	oe

$\mathbf{6}$	$\tan 30=\frac{1}{\sqrt{3}}$	B 1	

7	$\operatorname{Sin} 60=\frac{\sqrt{3}}{2}$	B 1	
	$4 \sqrt{3}$	A 1	

8	$A C=\sqrt{12}$	M 1	
	$\frac{\sqrt{12}}{\sqrt{3}}=\sqrt{4}=2$	A 1	oe

Trigonometry - Higher Mark Scheme

| Q Answer | Mark | Comments |
| :---: | :---: | :---: | :---: |
| $\mathbf{1}$ $\frac{4}{\sqrt{41}}$ B 1
 $\mathbf{2}$ $18 \div \cos 31$ M 1
 $[20.99,21]$ A 1
 $\mathbf{3}$ $\tan x=\frac{23}{30}$ or $\tan ^{-1}\left(\frac{23}{30}\right)$ M 1 | | |
| \begin{tabular}{\|c|c|c|}
\hline
\end{tabular} | | |

| Q Answer | Mark | Comments |
| :---: | :---: | :---: | :---: |

5	Alternative method 1		
	$\sqrt{5^{2}+12^{2}}$ or 13 or $\sqrt{5^{2}+15^{2}}$ or 15.8 or $\sqrt{12^{2}+15^{2}}$ or 19.2	M1	
	$\begin{aligned} & \sqrt{\text { their } 13^{2}+15^{2}} \\ & \text { or } \sqrt{\text { their } 15.8^{2}+12^{2}} \\ & \text { or } \sqrt{\text { their } 19.2^{2}+5^{2}} \end{aligned}$	M1dep	
	[19.8, 20]	A1	
	Alternative method 2		
	$\sqrt{5^{2}+12^{2}+15^{2}}$	M2	
	[19.8, 20]	A1	

6	$(B C)=12 \div \tan 35$ or $(A B)=12 \div \tan 42$	M 1	
	$A B=[13,13.33]$	A 1	
	$B C=[17,17.14]$	A 1	
	$\sqrt{\text { their } 17^{2}+\text { their } 13^{2}}$	M 1 dep	
	$[21.7,22]$	A 1	

7	$\sin A=\frac{a}{c}$ and $\cos A=\frac{b}{c}$	M1	
	$\left(\frac{a}{c}\right)^{2}+\left(\frac{b}{c}\right)^{2}=\frac{a^{2}+b^{2}}{c^{2}}$	M1 dep	
	$\frac{a^{2}+b^{2}}{a^{2}+b^{2}}=1$	A1	

Sine and Cosine Rule - Higher Mark Scheme

Q	Answer	Mark	Comments
1	$\frac{a}{\sin A}=\frac{b}{\sin B}$	B1	
2	$a^{2}=b^{2}+c^{2}-2 b c \cos A$	B1	
3	$\frac{1}{2} b c \sin A$	B1	
4	$\frac{1}{2} \times 8 \times 14 \times \sin A=28$	M1	
	30	A1	
	$\frac{9}{\sin 48}=\frac{5}{\sin C}$	M1	oe
5	$\operatorname{SinC}=\frac{5 \times \operatorname{Sin} 48}{9}$	M1	
	[24.2, 24.4]	A1	
6	$\frac{\sqrt{3}}{2}-\frac{1}{\sqrt{2}}$	M1	
	$\frac{\sqrt{3}}{\sqrt{2} \sqrt{2}}-\frac{\sqrt{2}}{\sqrt{2 \sqrt{2}}}$	M1dep	
	$a=3$	A1	
	$b=2$	A1	

| Q Answer | Mark | Comments |
| :---: | :---: | :---: | :---: |

7	$\frac{15 \times 6}{2}$ or 45	M1	
	M1		
	$137.7(\ldots)$	M1dep	

8	135 seen or used	B1	May be shown by diagram
	$5^{2}+6^{2}-(2 \times 5 \times 6 \times \cos$ their 135$)$	M1	
	103.4	A1	
	$[10.1,10.2]$	A1	

Collecting ad representing data - Higher Mark Scheme

| Q Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |

1	$5+6+4+3+1+1$ or 20	M1	Allow one error or omission
	$\begin{aligned} & (5 \times 0+) 6 \times 1+4 \times 2+3 \times 3+1 \times 4 \\ & +1 \times 5 \end{aligned}$ or $(0+) 6+8+9+4+5$ or 32	M1	Allow one error or omission
	(40-their 32$) \div(24-$ their 20$)$	M1	
	2	A1	

2(a)	Primary and Continuous	B2	B1 one correct (and one incorrect)		
2(b)	Points should be plotted at midpoints of classes	B1	oe Points shouldn't be at upper class boundaries Third point is wrong height	B1	oe
:---					
Point should be at 44, not 48					

| Q Answer | Mark | Comments |
| :---: | :---: | :---: | :---: |

3(a)	$300,425,500$	B1	
3	Plotted at UCBs $(\pm 1 / 2 \mathrm{sq}) 10,40,60$, 80,100	B1	
	Heights correct $(\pm 1 / 2 \mathrm{sq})$ at 0,60, $300,425,500$	B1ft	ft their values from table Must be an increasing function and not a straight line
	B1ft	ft their 5 plots Must be an increasing function and not a straight line	
	36 or 37 or 38	B1ft	ft reading across and down from 50 on the vertical scale of their graph

	$\mathrm{D}=60^{\circ}$ or $\frac{1}{6}$ or $1^{\circ}=20$ or $10^{\circ}=200$ or $\mathrm{B}=600$ or $\mathrm{C}=1800$ or $\mathrm{A}=3600$	B1	Allow $\pm 1^{\circ}$ This mark may not be seen but may be implied by other work
$360 \div$ their 60×1200 or 6×1200 or 1800×4 or $600+1800+3600(+1200)$ or $(600+1800+1200) \times 2$	M1	oe	

| Q Answer | Mark | Comments |
| :---: | :---: | :---: | :---: |

5	Correct vertical scale or key shown or 120 or 100 in correct position in table	M1	1 large square $=20$ hamsters oe or 5 small squares $=4$ hamsters oe or scale of 2 per cm
	120 and 100 in correct positions in table	A1	
	Either bar correct area in histogram $(120-140$ bar 4.5 large squares high or $140-180$ bar 1 large square high)	M1	A1
	One graduation is sufficient for scale One bar labelled with correct frequency is sufficient for key		

Statistics recap and review - Higher Mark Scheme

Q	Answer	Mark	Comments

$\mathbf{1}(\mathbf{a})$	$45 \times(800-255)$	M1	
	245.25	A1	
$\mathbf{1 (b)}$	140 p	B1 ft	ft their line of best fit $[125,150]$
1(c)	No, as production costs would never be zero or negative and 600 is beyond the range of the graph	B1	oe

2	Values of Monday 10, Tuesday 18, Wednesday 12, Thursday 14, Friday 18	B1	
	Bar chart or vertical line graph drawn and fully labelled	B1	

3	$6 \times 210-(208+367+156+132+$ $98)$	M1	
	299	A1	

4(a)	Table 40 and 90	B2	B1 each
	Histogram, bar from 110 to 120 to height of 3 and bar from 130 to 150 to height of 4.5	B2	B1 each
	130 th value mentioned and	B1	
	$15+30+40+45=130$	B1	oe
4(c)	That the data is spread out proportionately within the class interval	B1	oe

| Q Answer | Mark | Comments |
| :---: | :---: | :---: | :---: |

5(a)	$[37,38]$ read from graph	B1	
	$[24,26]$	B1	
	That the sample is representative but as it is only meat eaters this is unlikely and as meat is a factor in high cholesterol then the actual percentage may be lower	B1	
5(c)	The vegetarian had a lower cholesterol on average as their median was less	B1	
	The meat eaters has a more consistent cholesterol level as their IQR was lower.	B1	

Statistical measures - Higher Mark Scheme

| Q Answer | Mark | Comments |
| :---: | :---: | :---: | :---: |

$\mathbf{1 (a)}$	270	B1	
$\mathbf{1 (b)}$	The owners salary will bias the data as it is much bigger than anyone else	B1	

	Reference to collecting data of time spent revising and mark in test	B1	
	Reference to plotting this data on a scatter graph	B1	
	Reference to how the scatter graph can be analysed, eg drawing a line of best fit to see the correlation	B1	
Reference to how the correlation will prove or disprove the hypothesis, ie a positive correlation would indicate that the hypothesis is true.	B1		

3	Midpoints seen, $52.5,57.5,62.5,67.5$ and 72.5 and sum of products of midpoint \times frequency (3190)	M1	Allow one error
	Their Sum $\div 50$	M1dep	
	63.8	A1	
3(b)	That all values in any group are equal to the midpoint	B1	oe

4a)	$22 \times 43697 \div 170$	M1	
	5655	A1	
4(b)	That the sample is representative	B1	

5(a)	$[37,39]$	B1	
5(b)	$[15,17]$	B1	

5(c)	The university students were quicker overall with a lower median	B1	
	The high school students were more consistent with a lower IQR	B1	

Basic probability - Higher Mark Scheme

| Q Answer | Mark | Comments |
| :---: | :---: | :---: | :---: |

1	6×6 or 36	M1	May be implied from a diagram eg sample space or as the denominator of a fractional answer
	$4+3+2+2+1+1$ or $2,3,5,7,3,5,7,5,7,5,7,7,7$ or 13	M1	May be shown by exactly 13 singledigit primes in a list, grid or table or as the numerator of a fractional answer
	$\frac{13}{36}$	A1	oe fraction, decimal, percentage SC2 $\frac{15}{36}$ oe

2(a)	21 men and 63 women	B1	
	15 men pass and 6 fail	B1ft	ft their 21 divided in ratio 5:2
	42 women pass and 21 women fail	B1ft	ft their 63 divided in ratio $2: 1$ SC2 Any three correct values SC1 Any two correct values
	Fully correct: 21 15 (84) 6 63 42 21		
2(b)	$\frac{\text { their } 42}{84}$	M1	
	$\frac{1}{2}$	A1ft	$\mathrm{ft} \frac{\text { their } 42}{84}$ cancelled down

| Q Answer | Mark | Comments |
| :---: | :---: | :---: | :---: |

3	60-27 or 33 (tench) or $(60+10) \div 2$ or 35 (carp or tench) or $60 \div 2$ or 30 (carp or tench)	M1	
	their 35-27 or 8 (carp added) or their 35 - their 33 or their $30-27+10 \div 2$ or their 33 - their $30+10 \div 2$	M1dep	
	2	A1	SC2 8

4	Alternative method 1		
	$1-0.25-0.35-0.3$ or 0.1	M1	oe May be seen in table
	$40 \div 0.25 \text { or } 160$ or $0.25 \div 0.1 \text { or } 2.5$	M1	oe
	their $160 \times$ their 0.1 or $40 \div \text { their } 2.5$	M1dep	oe dep on previous M
	16	A1	
	Alternative method 2		
	$40 \div 0.25$ or 160	M1	oe
	$0.35 \times$ their 160 or 56 and $0.3 \times$ their 160 or 48	M1dep	oe
	their 160-40-their 56-their 48	M1dep	
	16	A1	

| Q Answer | Mark | Comments |
| :---: | :---: | :---: | :---: |

Venn diagrams, tree diagrams and relative frequency - Higher Mark Scheme

| Q Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |

6(a)	$25+30+20+45$ or 120	M1	
	$\frac{45}{120}$	A1	oe fraction, decimal or percentage
6(b)	$\begin{aligned} & \frac{(25+30)}{120} \times \frac{(20+45)}{119} \\ & \text { or } \\ & \frac{(25+30)}{120} \times \frac{(120-\text { their } 55)}{119} \\ & \text { or } \frac{3575}{14280} \end{aligned}$	M1	oe ft their 120 from (a)
	$\frac{55}{120} \times \frac{65}{119} \times 2$	M1	oe
	$\frac{7150}{14280}$	A1	oe fraction, decimal or percentage $\text { SC2 } \frac{7150}{14400}$

7(a)	28	B1	
7(b)	$\frac{27}{40}$	B1	oe fraction, decimal or percentage
7(c)	$\frac{32}{60}$	B1	oe fraction, decimal or percentage

